
Users Guide and API Reference

SNAPconnect

Copyright 2008-2024 Synapse Wireless, All Rights Reserved. All Synapse products are patent pending.
Synapse, the Synapse logo and SNAP are all registered trademarks of Synapse Wireless, Inc.

351 Electronics Blvd. SW // Huntsville, AL 35824 // (877) 982-7888 // synapsewireless.com

CONTENTS

1 API Reference Guide 3

2 Release Notes 47

Python Module Index 49

Index 51

i

ii

SNAPconnect Reference, Release snapconnect/v3.8.1

The SNAPconnect Python package is a full SNAP implementation, allowing you to create programs that
natively interact with the SNAP network. This reference guide provides package release notes as well as
detailed information about the SNAPconnect Python API.

CONTENTS 1

SNAPconnect Reference, Release snapconnect/v3.8.1

2 CONTENTS

CHAPTER

ONE

API REFERENCE GUIDE

The following sections provide details about SNAPconnect’s Python interface:

1.1 Functions

1.1.1 __init__

class Snap(license_file=None, nvparams_file=None, funcs=None, scheduler=None, addr=None,
rpc_handler=None)

Initializes a SNAPconnect instance.

Parameters

• license_file – The full path to a SNAPconnect license file. The default value of
None indicates that the license file is namedLicense.dat and is located in the present
working directory, which will typically be the same directory that holds your Python
code files. For the free evaluation license, no License.dat is needed. IfSNAPconnect
cannot find License.dat in the current directory, it will fall back to the free evaluation
license.

• nvparams_file – The full path to a SNAPconnect NV parameters file. The default
value of None indicates that the file is named nvparams.dat and is located in the
present working directory, which will typically be the same directory that holds your
Python code files.

• funcs – The callable functions for this instance to expose to the SNAP network. If
you do not want to expose any callable functions to the SNAP network, set funcs
to an empty dictionary {}. Any given function dictionary should only be passed to a
single instance of SNAPconnect.

• scheduler – Internally used by SNAPconnect

• addr – The SNAP address to use from the license file. If nothing is specified, SNAP-
connect uses the first address in the license file. The format of this parameter is a
three-byte string, e.g., x76 xa2 x5c represents SNAP address 76.A2.5C.

• rpc_handler – Internally used by SNAPconnect

Raises

• RuntimeError(“Non-licensed address provided”) – For example, the License.dat file
is for address 11.22.33 but you have asked to “be” address 22.44.66.

• RuntimeError(“Invalid license found”) – The license file specified is invalid. If you
don’t specify a license file name, the default of “License.dat” is assumed.

3

SNAPconnect Reference, Release snapconnect/v3.8.1

• IOError(“Unable to load NV params file – <filename>”) : The expected NV parameters
file could not be loaded. If you specify a file, it is required to be present and valid.
If you do not specify a file, then the default of “nvparams.dat” is assumed, and an
empty file with default values will be generated if the file is not found

• RuntimeError(“Unable to determine callable functions”) – You must provide a dictio-
nary of callable functions, even if it is an empty one, or None to indicate that all
functions in your application are callable.

• ImportError(“Unable to find PyCrypto library required for AES support”) – You have
enabled AES-128 encryption, but you have not provided the required PyCrypto library.

• ValueError(“Unknown encryption type specified – <encryption type>”) : Valid choices
are NONE (0), AES128 (1), and BASIC (2).

1.1.2 accept_sniffer

Snap.accept_sniffer()
Start allowing remote sniffer connections over TCP.

Returns None

Raises RuntimeError(“You must be accepting TCP connections to call accept_sniffer()”) –
You must make a call to accept_tcp() prior to accepting remote sniffer connections
over TCP.

Note: Incoming remote sniffer connections will be using a different realm for the authentication func-
tion than regular TCP connections. See the Authentication Realms section for more details.

See also:

• accept_tcp()

• connect_tcp()

• stop_accepting_sniffer()

• stop_accepting_tcp()

1.1.3 accept_tcp

Snap.accept_tcp(auth_info=<function server_auth>, ip=”, port=48625, tcp_keepalives=False, for-
ward_groups=None)

Start listening for and accepting remote IP connections.

Parameters

• auth_info – The function to call when authenticating remote credentials (defaults
to public credentials). If providing a custom function to call, it should have the sig-
nature “server_auth(realm, username)” where the two string arguments are supplied
by the connecting instance and the function returns the appropriate password. See
the Authentication Realms section for more details on the realm parameter.

• ip – The IPv4 address to listen on for remote connections (default all addresses)

• port – The IP port number to listen on for remote connections (default 48625)

• tcp_keepalives – Enable or disable TCP keepalives (default False)

4 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

• forward_groups – Multi-cast groups to forward onward through this interface; the
default value of None indicates that the interface will use the value specified in NV6
- Multicast Forward Groups. The forward_groups parameter can be important if you
have a radio network that uses multicast traffic, but you do not want those packets
to propagate over the Internet.

Returns None

Raises ValueError(“auth_info is not callable”) – Parameter auth_info can be unspecified (in
which case the default server_auth() routine is used), but if you provide a value for this
parameter it must be a function that SNAPconnect can invoke.

Note: Establishment of an actual connection can trigger a hooks.HOOK_SNAPCOM_OPENED event. If the
connection later goes down it can trigger a hooks.HOOK_SNAPCOM_CLOSED event.

See also:

• connect_tcp()

• disconnect_tcp()

• stop_accepting_tcp()

1.1.4 add_rpc_func

Snap.add_rpc_func(rpc_func_name, rpc_func, allow_alternate_key=False)
Adds a function to the existing “RPC dictionary”.

Parameters

• rpc_func_name – This is the name the new function will be callable by via RPC. It
does not have to match the actual function’s name.

• rpc_func – This must be a Python callable and represents the actual function to be
invoked.

• allow_alternate_key – Defaults to False if unspecified, but if True adds the spec-
ified rpc_func_name to a “whitelist” of functions that can also be remotely in-
voked with alternate encryption (an alternate encryption key). See also function
rpc_alternate_key_used() , which is how you can detect that this has actually
taken place.

Returns This function returns True if the function was successfully added to the RPC dic-
tionary. It returns False if the function could not be added because one with the same
name already exists in the dictionary. (You can use this function to add a new function
but you cannot use it to replace an existing function.)

Note: When the SNAPconnect instance is first instantiated by your application code, you pass it a
Python dictionary containing all of the function names that you want to be able to invoke from other
SNAP nodes. This function lets you add additional functions to that dictionary after-the-fact.

1.1. Functions 5

SNAPconnect Reference, Release snapconnect/v3.8.1

1.1.5 allow_serial_sharing

static Snap.allow_serial_sharing(enabled=True)
Enable or disable sharing of serial connections between SNAPconnect instances.

If serial connection sharing is enabled, all open serial connections will be shared when a new SNAP-
connect instance is constructed. Serial connections opened after a SNAPconnect instance is con-
structed will not be shared. Shared serial connections will be able to receive broadcast messages and
route for all connected SNAPconnect instances.

Example

This is a static function on the Snap class and should be invoked like this:

snap.Snap.allow_serial_sharing(True)

Parameters enabled – True if serial connection sharing should be enabled or False if it
should be disabled. This parameter is shared across all SNAPconnect instances. This
defaults to True.

Returns None

Note: SNAPconnect instances must be running in the same Python interpreter session in order to
share serial connections. SNAPconnect instances running in different Python interpreter sessions
will not be able to share serial connections.

See also:

• open_serial()

1.1.6 cancel_upgrade

Snap.cancel_upgrade(addr)
Cancel an over-the-air firmware upgrade.

Parameters addr – The three-byte network address of the remote node for which the
firmware upgrade is to be cancelled (Ex. “x12x34x56”)

Returns This function returns True if the upgrade was canceled. This function returns False
if no upgrade is currently running for the given address or the upgrade has already com-
pleted.

Note: This function can result in a hooks.HOOK_OTA_UPGRADE_COMPLETE event if an upgrade was
successfully canceled.

See also:

• upgrade_firmware()

6 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.1.7 close_all_serial

static Snap.close_all_serial()
Close all opened serial connections for all SNAPconnect instances.

Warning: This is a static function on the Snap class. If multiple instances of SNAPconnect are
running in the same application, they will all have their serial connections closed.

This is equivalent to calling the close_serial() function for every serial connection created with
open_serial() .

Returns None

Note: This function can trigger one or more hooks.HOOK_SERIAL_CLOSE events.

See also:

• open_serial()

• close_serial()

1.1.8 close_serial

Snap.close_serial(serial_type, port)
Close the specified serial port if open.

Parameters

• serial_type – The type of serial interface to close

• port – The port of that particular type to close, as appropriate for your operating
system. On Windows, port is a zero-based list. (Specify 0 for COM1 for example.).
On Linux, port will typically be a string, for example /dev/ttys1.

Returns None

Note: This function can trigger a hooks.HOOK_SERIAL_CLOSE event.

See also:

• open_serial()

• Serial port operations for serial_type constants

1.1.9 connect_tcp

Snap.connect_tcp(host, auth_info=<function client_auth>, port=None, retry_timeout=60, secure=False,
forward_groups=None, tcp_keepalives=False, cache_dns_lookup=False, snif-
fer_callback=None)

Connect to another SNAP node over TCP/IP.

1.1. Functions 7

SNAPconnect Reference, Release snapconnect/v3.8.1

Warning: SNAPconnect only supports connecting to IPv4 addresses. If a hostname is provided it
must be able to be resolved to an IPv4 address.

Parameters

• host – The IPv4 address or hostname of the other SNAP node as a dotted string
(e.g., “192.168.1.1”)

• auth_info – The function to call when requesting the client’s credentials (defaults
to public credentials). If providing a custom function to call, it should have the signa-
ture “client_auth(realm)” where the realm argument is supplied by the remote server
and the function returns a tuple that contains the client’s username and password.
See the Authentication Realms section for more details on the realm parameter.

• port – The IP port number to connect to

• retry_timeout – A timeout, in seconds, to wait before retrying to connect (default
60)

• secure–A boolean value specifying whether SSL encryption is enabled for this con-
nection (default False) SNAPconnect can initiate an SSL connection but cannot ac-
cept an SSL connection. Some type of proxy is necessary to decrypt and reroute
received traffic in order to form an encrypted connection between SNAPconnect in-
stances. For example, stunnel (www.stunnel.org) could be used to receive encrypted
data on a port, decrypt the data, and forward it to the port SNAPconnect is using to
accept_tcp. When secure is set to True, the port will default to 443.

• forward_groups – Multi-cast groups to forward onward through this interface; de-
faults to using the value specified in NV6 - Multicast Forward Groups. The for-
ward_groups parameter can be important if you have a radio network that uses mul-
ticast traffic but you do not want those packets to propagate over the Internet.

• tcp_keepalives – Enable TCP layer keepalives (default False). If enabled, you may
experience conflicts with certain firewall configurations, which may close the con-
nection. The keepalives can also increase the amount of TCP/IP traffic your SNAP
network generates, which might be an issue if you are using a cellular modem for
your network connectivity.

• cache_dns_lookup – Only perform a DNS lookup once for the host being connected
to (default False). This option was added because some DNS servers are extremely
slow.

• sniffer_callback – Callback used for making remote sniffer connec-
tions to SNAPconnect instances that have called both accept_tcp() and
accept_sniffer() . When this callback is used, regular traffic will not pass across
this TCP connection, and the accepting end of the connection will forward all
received and transmitted packets to this interface. This function should have
the signature “sniffer(descriptor)”. See the Sniffer Descriptors section for more
detailson the descriptor objects that are passed to local and remote sniffers. The
sniffer is NOT sniffing over-the-air packets. This callback is only passed packets
which are received and transmitted over SNAPconnect serial and TCP connections.

Returns None

Note: Establishment of the actual connection can trigger a hooks.HOOK_SNAPCOM_OPENED event. If
the connection later goes down it can trigger a hooks.HOOK_SNAPCOM_CLOSED event.

8 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

See also:

• accept_tcp()

• disconnect_tcp()

• accept_sniffer()

• stop_accepting_tcp()

1.1.10 data_mode

Snap.data_mode(dst_addr, data)
Sends a transparent (aka data) mode packet to the specified SNAP network address.

Parameters

• dst_addr – The three-byte network address of the remote node (Ex. ‘x12x34x56’)

• data – The data to send

Returns A packet identifier which can be used in the hooks.HOOK_RPC_SENT handler.

Note: This function can result in a hooks.HOOK_STDIN event at the node specified by dst_addr.

See also:

• mcast_data_mode()

1.1.11 directed_mcast_rpc

Snap.directed_mcast_rpc(conn, port, group, ttl, func_name, *args)
Makes a Remote Procedure Call, or RPC, using multicast messaging. This means the message could
be acted upon bymultiple nodes. Themulticastmessagewill only be directed out one interface instead
of broadcast across all open TCP and serial connections.

Despite the similarity of the names, the result of this function is very different from that of the
dmcast_rpc() function. This function restricts which interface will be used to send a standard mul-
ticast message, while the dmcast_rpc() function sends a message across all interfaces (subject to
their Multicast Forwarded Groups settings in :ref:‘sc_nv6’).

Parameters

• conn – For serial connections, this is the serial type passed to open_serial() . For
TCP interfaces, this value should be a string for the IP address of the interface.

• port – The TCP or serial port number of the interface that should transmit the mes-
sage.

• group–Specifieswhich nodes should respond to the request, basedon the receiving
node’s Multicast Process Groups setting in NV5 - Multicast Process Groups.

• ttl – Specifies the Time To Live (TTL) for the request.

• func_name – The function name to be invoked.

• args – Any arguments for the function specified by func_name. See mcast_rpc()
for more details.

1.1. Functions 9

SNAPconnect Reference, Release snapconnect/v3.8.1

Returns A packet identifier which can be used in the hooks.HOOK_RPC_SENT handler. This
function will return False if the specified interface does not exist.

Note: This function can trigger a hooks.HOOK_RPC_SENT event.

See also:

• mcast_rpc()

• dmcast_rpc()

1.1.12 disconnect_tcp

Snap.disconnect_tcp(host, port=48625, all=False, retry=False)
Disconnect from the specified instance.

Parameters

• host – The IP address or hostname of the instance from which to disconnect

• port – The IP port number (default 48625)

• all – Disconnect all connections matching the criteria (default False)

• retry – Disconnect, but then retry connecting to the same host and port (default
False)

Returns This function returns True if the specified connection was found and closed, other-
wise False.

Note: This function can result in one or more hooks.HOOK_SNAPCOM_CLOSED events being generated.

See also:

• accept_tcp()

• connect_tcp()

• stop_accepting_tcp()

1.1.13 dmcast_rpc

Snap.dmcast_rpc(dst_addrs, groups, ttl, delay_factor, func_name, *args)
Makes a Directed Remote Procedure Call, or RPC, using multicast messaging. This means the mes-
sage could be acted upon by multiple nodes. Unlike a standard multicast, however, the message will
only be acted upon by nodes explicitly listed in dst_addrs. Unlike an addressed RPC call, this directed
multicast does notmake use of routing or packet acknowledgement. Other nodes in themesh network
will forward the message (subject to their Multicast Forwarded Groups settings in NV6 - Multicast For-
ward Groups) when there is sufficient TTL to do so. There is no route discovery performed, and there
are no retries.

Note that though they have similar names, dmcast_rpc() functions very differently from
directed_mcast_rpc() . The directed_mcast_rpc() function allows you to restrict the interface
used to transmit your message, but the message sent is a “standard” multicast. This function for-
wards through all interfaces that would normally forward the message (subject to the multicast group

10 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

forwarding settings specified when the interface connection is opened), but will only be acted on by
the node(s) specified, and then only if the multicast group specified for the call matches the node’s
Multicast Process Groups setting in NV5 - Multicast Process Groups.

Parameters

• dst_addrs – A string containing concatenated three-byte addresses for any nodes
you wish to act on the directed multicast. For example, if you have nodes with ad-
dresses 01.02.03, 04.05.06, 07.08.09, and 0A.0B.0C, the parameter should contain:

\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c

If you provide a string that is not a multiple of three characters in length, the
dmcast_rpc() call will fail and nomessagewill be sent to any node. If you provide an
empty string ("") for this parameter, all nodes that receive the message that would
otherwise act on the message (subject to the groups parameter and the existence
of the function in the node’s script) will act on the request as though the call were
a regular mcast_rpc() call. However in this case, added features available only for
directedmulticast (such as information available through several get_info() calls)
are also available.

• group–Specifieswhich nodes should respond to the request, basedon the receiving
node’s Multicast Process Groups setting in NV5 - Multicast Process Groups.

• ttl – Specifies the Time To Live (TTL) for the request.

• delay_factor – Provides a mechanism to allow receiving nodes to stagger their
responses to the request. The parameter should be a one-byte integer specifying the
amount of time, in milliseconds, that should pass between node responses among
the nodes targeted by the request. For example, if the dst_addrs parameter contains:

\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c

and the delay_factor parameter contains 40, any radio traffic generated in re-
sponse by node 01.02.03 would be released immediately, radio traffic generated by
04.05.06 would be queued and held for 40 ms, radio traffic generated by 07.08.09
would be delayed for 80 ms, and radio traffic generated by 0A.0B.0C would be held
for 120 ms before release. Note that the function on the target node is executed
without delay. The delay only applies to radio communications directly invoked by
the called function. No delay is applied to serial communications from the receiving
node. Thus, an instance of SNAPconnect, which has only serial interfaces, is not
affected by this parameter. Setting this parameter to zero allows all receiving nodes
with radio interfaces to respond immediately, which may cause packet loss due to
interference. A check of get_info(25) in the called function on the receiving node
returns the delay_factor value specified, but also tells the receiving node to ignore
the transmission delay that would normally be enforced.

• func_name – The function name to be invoked.

• args – Any arguments for the function specified by func_name. See mcast_rpc()
for more details.

Returns A packet identifier which can be used in the hooks.HOOK_RPC_SENT handler. This
function will return False if the specified interface does not exist.

Note: This function can trigger a hooks.HOOK_RPC_SENT event.

See also:

1.1. Functions 11

SNAPconnect Reference, Release snapconnect/v3.8.1

• mcast_rpc()

• directed_mcast_rpc()

• rpc()

New in version 3.4.

1.1.14 get_info

Snap.get_info(which_info)
Get the specified system information.

Parameters which_info – Specifies the type of information to be retrieved (0-28 but with
some gaps – not all of the “info” types from the original [embedded] SNAP nodes ap-
ply to a PC-based application like SNAPconnect). This function returns the requested
information or None if the which_info parameter is invalid.

The possible values for which_info and their meanings/return values are:

12 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

which_infoMeaning Return Value
0 Vendor Always returns 0 indicating “Synapse”
1 Type of

radio
Always returns 1 indicating “no radio”

2 Type of
CPU

Always returns 8 indicating “unknown”

3 Hard-
ware
platform

Always returns 7 indicating “SNAPconnect”

4 Build
Type
(debug
or re-
lease)

Returns 0 if running under a debugger, Returns 1 if running standalone

5 Soft-
ware
MAJOR
version

Example: if version is 3.2.1 get_info(5) returns 3

6 Soft-
ware
MINOR
version

Example: if version is 3.2.1 get_info(6) returns 2

7 Soft-
ware
BUILD
version

Example: if version is 3.2.1 get_info(7) returns 1

8 Encryp-
tion
capabil-
ity

Returns 1 if AES-128 is available, (not necessarily enabled, just available for use),
Otherwise returns 2, indicating that only “SNAP Basic” encryption is available

9 SNAP
Se-
quence
Number

For SNAPconnect applications you should use the value returned by the rpc() ,
mcast_rpc() , and dmcast_rpc() functions. This enumeration is only imple-
mented to loosely match the embedded nodes

10 Multi-
cast flag

Returns 1 if the RPC currently being processed came in via multicast; returns 0 if
the packet came in via unicast

11 TTL Re-
maining

Returns the TTL (the “hops remaining”) field of the packet currently being pro-
cessed. For this to be of any use, you would have to know how many hops were
originally specified

15 Routes
stored
in Route
Table

Returns the number of active routes

24 Is Di-
rected
Multi-
cast

Returns a 1 if the function running was invoked by a directed multicast us-
ing dmcast_rpc() . Returns a 0 if the function running was invoked by a hook
or scheduled event, by an addressed RPC, or by a “normal” multicast (i.e.,
directed_mcast_rpc() or mcast_rpc()).

25 ReadDe-
lay Fac-
tor

Returns the delay factor specified for a message sent using dmcast_rpc() . This
delay factor has no effect on a SNAPconnect-based node, because the SNAP-
connect instance has only serial interfaces.

26 Address
Index

Directedmulticastmessages sent using dmcast_rpc() can targetmultiple nodes
by concatenating multiple SNAP addresses in the dst_addrs parameter. This
option indicates where the address of the contextual node appears in that list, as
a zero-based index.

27 Mul-
ticast
Groups

Returns an integer indicating the multicast group mask specified for the packet
when it was originally sent, if it was sent as a directed multicast using
dmcast_rpc() .

28 Original
TTL

Returns the TTL (the “hops”) field specified for the packet when it was originally
sent, if it was sent as a directed multicast using dmcast_rpc() . Combined with
get_info(11), you can determine how many hops it took for the message to
reach your node.

1.1. Functions 13

SNAPconnect Reference, Release snapconnect/v3.8.1

Note: The string snap.VERSION is equivalent to retrieving the major, minor and build revisions (getinfo
5, 6, and 7 respectively). For example:

>>> from snapconnect import snap
>>> snap.VERSION
‘3.4.0’

1.1.15 load_nv_param

Snap.load_nv_param(nv_param_id)
This function returns the requested NV Parameter. Note that on some platforms the MAC Address
parameter is set by the hardware (for example, on a SNAPconnect E12). In such cases, a request for
that parameter will return the “hardware” value rather than any artificially stored value.

Parameters nv_param_id – Specifies which “key” to retrieve from storage. Some NV pa-
rameters may have no effect on the SNAPconnect instance.

Returns The indexed parameter from storage.

See also:

• save_nv_param()

• NV Parameters section for more details about the individual NV Parameters

1.1.16 local_addr

Snap.local_addr()
Returns the local network address of this instance.

Returns The three-byte network address of the SNAPconnect instance (Ex. “x12x34x56”).

1.1.17 loop

Snap.loop()
Calling the loop function is essentially equivalent to using this in your code:

from time import sleep
while True:

poll()
sleep(0.001)

Returns This function does not return. You should only call it if your SNAPconnect appli-
cation is “purely reactive” – for example, an application that only responds to RPC calls
from other nodes.

Example

The 1 ms sleep between polls prevents SNAPconnect from completely monopolizing your CPU. You
can adjust this sleep duration by setting the snap.SLEEP_TIME global in your code to a value, in sec-
onds. Longer sleep periods between checks consume less of your CPU, but also reduce the respon-

14 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

siveness of your network as it takes longer to get packets between SNAPconnect and your bridge node
(or other interface):

snap.SLEEP_TIME = 0.1
loop()

Note: If your application needs to take action on its own behalf (for example, if it needs to be polling
other nodes but needs to perform its own independent processing between received messages), then
you probably should be using the poll() function instead.

See also:

• poll()

• poll_internals()

1.1.18 mcast_data_mode

Snap.mcast_data_mode(group, ttl, data)
Sends a multicast transparent (aka data) mode packet to the nodes specified by the group.

Parameters

• group–Specifieswhich nodes should respond to the request, basedon the receiving
node’s Multicast Process Groups setting in NV5 - Multicast Process Groups

• ttl – Specifies the Time To Live (TTL) for the request

• data – The data to send

Returns A packet identifier which can be used in the hooks.HOOK_RPC_SENT handler.

Note: This function can result in a hooks.HOOK_STDIN event in one or more other nodes.

See also:

• data_mode()

1.1.19 mcast_rpc

Snap.mcast_rpc(group, ttl, func_name, *args)
Call a Remote Procedure (make a Remote Procedure Call, or RPC), using multicast messaging. This
means the message could be acted upon by multiple nodes.

Parameters

• group–Specifieswhich nodes should respond to the request, basedon the receiving
node’s Multicast Process Groups setting in NV5 - Multicast Process Groups

• ttl – Specifies the Time To Live (TTL) for the request

• func_name – The function name to be invoked

1.1. Functions 15

SNAPconnect Reference, Release snapconnect/v3.8.1

• args – Any arguments for the function specified by func_name

Note: Arguments should be given individually (separated by commas), not bundled
into a tuple. For example, if foo() is a function taking two parameters, use some-
thing like:

mcast_rpc(1, 2, 'foo', 1, 2) # <- correct!

instead of using something like:

mcast_rpc(1, 2, 'foo', (1,2)) # <- wrong!

Returns A packet identifier which can be used in the hooks.HOOK_RPC_SENT handler.

Note: This function can trigger a hooks.HOOK_RPC_SENT event.

See also:

• rpc()

1.1.20 open_serial

Snap.open_serial(serial_type, port, reconnect=False, dll_path=MODULE_PATH, for-
ward_groups=None, baudrate=None, io_loop=None)

Open the specified serial port for sending and receiving SNAP packets.

Parameters

• serial_type – The type of serial interface to open

• port – The port of that particular type to open, as appropriate for your operating
system. On Windows, port is a zero-based list. (Specify 0 for COM1 for example).
On Linux, port will typically be a string, for example /dev/ttys1.

• reconnect – Close the connection and re-open (default False)

• forward_groups–Multi-cast groups to forward through; defaults to usingNVparam

• baudrate – The baudrate for the serial connection

• io_loop – A Tornado IOLoop instance

See also:

• Serial port operations for serial_type constants

1.1.21 poll

Snap.poll()
Polls all needed components packages.

16 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.1.22 poll_internals

Snap.poll_internals()
Polls only internal components for this instance.

1.1.23 replace_rpc_func

Snap.replace_rpc_func(rpc_func_name, rpc_func)
Replace an existing function to be called remotely via RPC.

Parameters

• rpc_func_name – An existing public RPC function name

• rpc_func – The callable to be executed via RPC

Returns The original function that was replaced None if the function name had not been
previously added

1.1.24 rpc

Snap.rpc(dst_addr, func_name, *args)
Sends a unicast RPC.

Call a Remote Procedure (make a Remote Procedure Call, or RPC), using unicast messaging. A packet
will be sent to the node specified by the dst_addr parameter, asking the remote node to execute the
function specified by the func_name parameter. The specified function will be invoked with the param-
eters specified by the args parameter, if any arguments are present.

Parameters

• dst_addr – The three-byte network address of the remote node (Ex. “x12x34x56”)

• func_name – The function name to be invoked on the remote node

• args – Any arguments for the function specified by func_name

1.1.25 rpc_alternate_key_used

Snap.rpc_alternate_key_used()

Returns True if the packet came in with the alternate encryption key and the function was
on the whitelist.

1.1.26 rpc_source_addr

Snap.rpc_source_addr()
Originating address of the current RPC context (None if called outside RPC).

Returns The three-byte network address of the remote nodewhich initiated the RPC call (Ex.
“x12x34x56”).

1.1. Functions 17

SNAPconnect Reference, Release snapconnect/v3.8.1

1.1.27 rpc_source_interface

Snap.rpc_source_interface()
Originating interface of the current RPC context (None if called outside RPC).

Returns The interface of the remote node which initiated the RPC call.

1.1.28 rpc_use_alternate_key

Snap.rpc_use_alternate_key(enable_flag)
Enable and disable use of the alternate key. When enabled, this setting persists until you disable it,
and it affects ALL multicast RPC calls you send.

Parameters enable_flag – If True, use the alternate key. If False, revert to the normal key.

1.1.29 save_nv_param

Snap.save_nv_param(nv_param_id, obj, optional_bitmask=None)
Store individual objects for later access by id.

Parameters

• nv_param_id – Specifies which “key” to store the obj parameter under. 0-127 are
pre-assigned system IDs.

• obj – The object you would like to store for later use.

• optional_bitmask – For integers only, you can specify a bitmask of “bits of obj to
be applied”. Any bits not set in optional_bitmask remain intact.

See also:

• load_nv_param()

• NV Parameters section for more details about the individual NV Parameters

1.1.30 set_hook

Snap.set_hook(hook, callback=None)
Set the specified SNAP hook to call the provided function.

Parameters

• hook – The SNAP event hook identifier

• callback – The function to invoke when the specified event occurs

1.1.31 start_sniffer

Snap.start_sniffer(callback)
Start a local sniffer that passes descriptors to the given callback.

Parameters callback – Called when packets are sent or received by this SNAPconnect
instance.

Returns True if a sniffer could be started. False if one was already running.

18 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.1.32 stop_accepting_sniffer

Snap.stop_accepting_sniffer(close_existing=False)
Stop accepting remote sniffer connections over TCP.

Parameters close_existing – If True, close all existing sniffer connections

1.1.33 stop_accepting_tcp

Snap.stop_accepting_tcp(close_existing=False)
Stop listening for and accepting remote IP connections.

Parameters close_existing – If True, close all existing TCP connections

1.1.34 stop_sniffer

Snap.stop_sniffer()
Stop a running local sniffer.

Returns True if the sniffer could be stopped. False if one was not already running.

1.1.35 traceroute

Snap.traceroute(dst_addr)
Sends a traceroute request.

Parameters dst_addr – The three-byte network address of the remote node (Ex.
“x12x34x56”)

1.1.36 upgrade_firmware

Snap.upgrade_firmware(addr, file)
Start an over the air firmware upgrade.

Programming may take up to 2 minutes after the transfer completes. Do not remove power to the
device during this time.

Parameters

• addr – The three-byte network address of the node to upgrade (Ex. “x12x34x56”)

• file – The path to the firmware image

Returns Returns True if an upgrade can be started or False if the upgrade can’t be started
for some reason. Will result in a call to the OTA upgrade complete hook.

Note: This function will trigger a hooks.HOOK_OTA_UPGRADE_COMPLETE event when an up-
grade completes successfully or an error occurs that halts the upgrade process. A hooks.
HOOK_OTA_UPGRAGE_STATUS event will be triggered every time progress is made in an over the air up-
grade.

1.1. Functions 19

SNAPconnect Reference, Release snapconnect/v3.8.1

1.2 Constants and Enumerations

This section lists and describes the numerous constants defined by the SNAPconnect library.

Note: The constants defined here are in the snap Python module. For readability, we have removed the
module prefix, but you will need to prefix them with snap. in your code. For example:

save_nv_param(snap.NV_AES128_ENABLE_ID, snap.ENCRYPTION_TYPE_NONE)

set_hook(snap.hooks.HOOK_TRACEROUTE, trace_route_handler)

1.2.1 Encryption

Constant Description
ENCRYPTION_TYPE_NONE Used to turn off encryption.
ENCRYPTION_TYPE_AES128 Used to enable AES-128 encryption.
ENCRYPTION_TYPE_BASIC Used to enable basic SNAP encryption.

1.2.2 Serial port operations

You will use the following constants as the serial_type parameter to the close_serial() , open_serial() ,
hooks.HOOK_SERIAL_OPEN , and hooks.HOOK_SERIAL_CLOSE handler functions.

Con-
stant

Description

SERIAL_TYPE_SNAPSTICK100TheSN132SNAPstick, sometimes referred to as a “paddle board”, or the SN163 demonstration
board, sometimes referred to as a “bridge board”. These are easily recognized, since they have
no case (cover), and you can swap out theSNAP Engine on it for a differentmodel. These have
to be plugged into a USB port.

SERIAL_TYPE_SNAPSTICK200The SS200 SNAPstick has a plastic case and does not accept plug-in SNAP Engines. It is
completely self-contained and has to be plugged into a USB port.

SERIAL_TYPE_RS232“True” COM port, or a USB-serial cable.

1.2.3 Rpc_source_interface()

Constant Description
INTF_TYPE_UNKNOWN You should never see this
INTF_TYPE_802154 For future use, as SNAPconnect currently relies on a “bridge” node to provide

the radio
INTF_TYPE_SERIAL RPC call came in over RS-232
INTF_TYPE_SILABS_USB RPC call came in over a Silicon Labs USB interface chip (i.e., an SN132 or SN163)
INTF_TYPE_ETH RPC call came in over TCP/IP
INTF_TYPE_SNAPSTICK RPC call came in from an SS200 SNAPstick

20 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.2.4 SPY Uploading

Constant Description
SNAPPY_PROGRESS_ERASE Previous script has been erased
SNAPPY_PROGRESS_UPLOAD “Chunk” of script accepted
SNAPPY_PROGRESS_COMPLETEUpload completed successfully
SNAPPY_PROGRESS_ERROR Upload failed
SNAPPY_PROGRESS_TIMEOUTNode failed to respond
SNAPPY_PROGRESS_WRITE_ERRORFLASH write failure
SNAPPY_PROGRESS_WRITE_REFUSEDPower too low to attempt
SNAPPY_PROGRESS_UNSUPPORTEDNode does not support script upload. For example, it is a SNAPconnect in-

stance rather than an embedded node.

1.2.5 Firmware upgrades

Constant Description
OTA_PROGRESS_COMPLETE Upgrade completed successfully
OTA_PROGRESS_ERROR Upgrade failed
OTA_PROGRESS_CANCELED Upgrade canceled
OTA_PROGRESS_TIMEOUT Node failed to respond
OTA_PROGRESS_WRITE_ERROR FLASH write failure
OTA_PROGRESS_WRITE_REFUSED Power too low to attempt
OTA_PROGRESS_UNSUPPORTED Node does not support over the air firmware upgrade

1.2.6 Logging

Python logging supports fine-grained control of level (verbosity).

The levels that can be applied are DEBUG, INFO, WARNING, ERROR, and FATAL, where DEBUG is the most
verbose, and FATAL is the least.

To change the log level globally, you would do something like:

log = logging.getLogger()
log.setLevel(logging.DEBUG)

To change the level on a per-module basis, you use the name of the module: apy, SerialWrapper, snap, or
snaplib. For example:

snaplib_log = logging.getLogger('snaplib')
snaplib_log.setLevel(logging.ERROR)

Even finer-grained control is possible, but you have to know the name (label) of the loggers you want to
control. That is the purpose of this next list.

• SerialWrapper

– SerialWrapper.pySerialSocket

• snap

– snap.AutoSaver

– snap.Deferred

1.2. Constants and Enumerations 21

SNAPconnect Reference, Release snapconnect/v3.8.1

– snap.PacketSink

– snap.dispatchers

– snap.listeners

– snap.mesh

– snap.SNAPtcpConnection

– snap.SNAPtcpServer

• snaplib

– snaplib.ComUtils

– snaplib.EventCallbacks

– snaplib.PacketQueue

– snaplib.PacketSerialProtocol

– snaplib.PySerialDriver

– snaplib.RpcCodec

– snaplib.TraceRouteCodec

– snaplib.ScriptsManager

– snaplib.SerialConnectionManager

– snaplib.SnappyUploader

For example:

snaplib_log = logging.getLogger('snaplib.RpcCodec')
snaplib_log.setLevel(logging.INFO)

1.3 NV Parameters

Embedded SNAP nodes keep configuration parameters in physical Non-Volatile (NV) memory.

SNAPconnect emulates this type of configuration repository using a standard Python pickle file named
nvparams.dat.

The following non-volatile parameters are available through the save_nv_param() and load_nv_param()
API functions.

Note: Unlike in embedded SNAP nodes, SNAPconnect NV Parameter changes take effect immediately (no
reboot required).

Below is a list and description of the System (Reserved) NV Parameters that apply to SNAPconnect. You
can use these same constants when accessing NV parameters on an embedded node from a SNAPconnect
script, even if the parameter has nomeaning in theSNAPconnect context (such as querying for a node’s radio
link quality threshold).

You can also define your ownNVParameters (in the range 128-254)which your script can access andmodify,
just like the system NV Parameters.

22 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.3.1 NV0-4 - Reserved

Reserved for Synapse use.

1.3.2 NV5 - Multicast Process Groups

snap.NV_GROUP_INTEREST_MASK_ID = 5

This is a 16-bit field controlling whichmulticast groups the node will respond to. It is a bit mask, with each bit
representing one of 16 possible multicast groups. For example, the 0x0001 bit represents the default group,
or “broadcast group.” Removing a node from that group will make the node unable to respond to Portal’s
multicasts, such as global pings.

Default Value = 0x0001, which is the broadcast group

One way to think of groups is as “logical sub-channels” or as “subnets.” By assigning different nodes to
different groups (or different sets of groups), you can further subdivide your network.

For example, Portal could multicast a “sleep” command to group 0x0002, and only nodes with that bit set
in their Multicast Process Groups field would go to sleep. (This means nodes with their group values set
to 0x0002, 0x0003, 0x0006, 0x0007, 0x000A, 0x000B, 0x000E, 0x000F, 0x0012, etc., would respond.) Note
that a single node can belong to any (or even all - or none) of the 16 groups.

Group membership does not affect how a node responds to a direct RPC call. It only affects multicast
requests. However, many of the infrastructure calls made “behind the scenes” in a network, such as route
requests, are performed using multicasts on group 1.

See also:

• User Guide section on Multicast Groups

• NV6 - Multicast Forward Groups

1.3.3 NV6 - Multicast Forward Groups

snap.NV_GROUP_FORWARDING_MASK_ID = 6

This is a separate 16-bit field controlling which multicast groups will be re-transmitted (forwarded) by the
node. It is a bit mask, with each bit representing one of 16 possible multicast groups. For example, the
0x0001 bit represents the default group, or “broadcast group.”

Default Value = 0x0001, so all nodes process and forward only broadcast group packets

The NV5 - Multicast Process Groups and NV6 - Multicast Forward Groups parameters are independent of
each other. A node could be configured to forward a group, process a group, or both. It can process groups
it does not forward, or vice versa. It can forward one set of groups over its radio interface and a different set
of groups, with or without overlap, over its serial interface. As with processing groups, a node can be set to
forward any combination of the 16 available groups, including none of them.

Warning: If you set your bridge node to not forward multicast commands, Portal will not be able to
multicast to the rest of your network.

Note: Every interface opened in a SNAPconnect application has a forward_groups=None parameter avail-
able when you open (or listen for) the interface. This parameter restricts which multicast messages will be
forwarded through that interface from the SNAPconnect instance, with the default value of None indicating

1.3. NV Parameters 23

https://developer.synapse-wireless.com/reference/network/mcast.html#multicast-groups

SNAPconnect Reference, Release snapconnect/v3.8.1

that the interface will only allow multicast packets for groups that the SNAPconnect instance itself would
forward. The hazard here is that if you do not explicitly set the forward_groups parameter when you open
a connection, SNAPconnect will only be able to make multicast requests of nodes in groups that it would
normally forward. In other words, if you want SNAPconnect to be able to initiate multicast requests to a
group that it would not normally forward, you must explicitly set that group as a forwarding group when you
open the interface.

See also:

• User Guide section on Multicast Groups

• NV5 - Multicast Process Groups

1.3.4 NV7 - Reserved

Reserved for Synapse use.

1.3.5 NV8 – Device Name

snap.NV_DEVICE_NAME_ID = 8

Allows you to assign a name for the node, although you do not have to give your nodes explicit names. If
this parameter is set to None, then the node name will default to “SNAPcom”. You do not have to give your
nodes explicit names.

Default Value = None

Note: Spaces are not allowed in your Device Name. "My Node" is not a legal name, while "My_Node" is.

1.3.6 NV9-10 - Reserved

Reserved for future Synapse use.

1.3.7 NV11 - Feature Bits

snap.NV_FEATURE_BITS_ID = 11

These control some miscellaneous hardware settings on embedded SNAP nodes.

Feature Bit Name Hex Binary
Second CRC 0x0100 b0000.0001.0000.0000
Packet CRC 0x0400 b0000.0100.0000.0000

Second CRC The Second CRC bit (0x0100) enables a second CRC packet integrity check on platforms that
support it. It does not apply to data mode packets or to infrastructure packets such as message
acknowledgements. While this feature bit is still supported, the CRC provided by the Packet CRC bit is
recommended.

Default Value = 0

24 Chapter 1. API Reference Guide

https://developer.synapse-wireless.com/reference/network/mcast.html#multicast-groups

SNAPconnect Reference, Release snapconnect/v3.8.1

Warning: If you set this bit for the secondCRC, youmust set it in all nodes in your network, including
Portal and anySNAPconnect applications. A node that does not have this parameter setwill be able
to hear and act onmessages from a node that does have it set, but will not be able to communicate
back to that node.

Packet CRC The Packet CRC bit (0x0400) adds an additional CRC validation to the complete packet for
every packet sent out over the air. This reduces the available packet payload, but provides an additional
level of protection against receiving (and potentially acting upon) a corrupted packet. The CRC that
has always been a part of SNAP packets means that there is a one in 65,536 chance that a corrupted
packet might get interpreted as valid. This additional CRC should reduce the chance to less than one
in four billion.

Default Value = 0

This is different from the CRC controlled by the Second CRC bit in that it includes packet (payload and
header) information for RPC, data, routing and acknowledgement packets rather than just covering the
RPC payload.

Enabling this CRC reduces your maximum packet payload by two bytes each:

Packet CRC Bit (Bit 10) Max Unicast Payload Max Multicast Payload
0 108 bytes 111 bytes
1 106 bytes 109 bytes

Warning: If you set this bit for packet-level CRC, youmust set it in all nodes in your network. It is also
recommended to configure Portal to match your SNAPconnect application to prevent generating
packets that exceed the new maximum payload in your network.

1.3.8 NV12-18 - Reserved

Reserved for Synapse use.

1.3.9 NV19 - Radio Unicast Retries

snap.NV_SNAP_MAX_RETRIES_ID = 19

This lets you control the number of unicast transmit attempts.

Default Value = 8

This parameter refers to the total number of attempts that will be made to get an acknowledgement back
on a unicast transmission to another node.

In some applications, there are time constraints on the “useful lifetime” of a packet. In other words, if the
packet has not been successfully transferred by a certain point in time, it is no longer useful. In these situ-
ations, the extra retries are not helpful - the application will have already “given up” by the time the packet
finally gets through.

By lowering this value from its default value of 8, you can tell SNAP to “give up” sooner. A value of 0 is treated
the same as a value of 1; a packet gets at least one chance to be delivered no matter what.

If your connection link quality is low and it is important that every packet get through, a higher value here
may help. However it may be appropriate to reevaluate your network setup to determine if it would be better

1.3. NV Parameters 25

SNAPconnect Reference, Release snapconnect/v3.8.1

to change the number of nodes in your network to either add more nodes to the mesh to forward requests,
or reduce the number of nodes broadcasting to cut down on packet collisions.

1.3.10 NV20 - Mesh Maximum Timeout

snap.NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID = 20

This indicates the maximum time (in milliseconds) a route can “live.”

Default Value = 60000, which is one minute

Discovered mesh routes timeout after a configurable period of inactivity (see NV21 - Mesh Minimum Time-
out), but this timeout sets an upper limit on how long a route will be kept, even if it is being used heavily. By
forcing routes to be rediscovered periodically, the nodes will use the shortest routes possible, at the expense
of some time spent rediscovering routes when the routes expire.

Note that you can set this timeout to zero (which will disable it) if you know for certain that your nodes are
stationary, or have some other reason for needing to avoid periodic route re-discovery.

You can use getInfo(14) to determine the size of a node’s route table (typically 10 entries, but that can vary
on some platforms), and getInfo(15) to monitor its use.

1.3.11 NV21 - Mesh Minimum Timeout

snap.NV_MESH_ROUTE_AGE_MIN_TIMEOUT_ID = 21

This is the minimum time (in milliseconds) a route will be kept, subject to the route table becoming full.

Default Value = 1000, which is one second

Note: In a busymesh environment, routesmay fall out of the route table before this time period has elapsed
if the route table becomes full and another route is discovered.

1.3.12 NV22 - Mesh New Timeout

snap.NV_MESH_ROUTE_NEW_TIMEOUT_ID = 22

This is the grace period (in milliseconds) that a newly discovered route will be kept, even if it is never actually
used, subject to the route table becoming full.

Default Value = 5000, which is five seconds

Note: In a busymesh environment, routesmay fall out of the route table before this time period has elapsed
if the route table becomes full and another route is discovered.

1.3.13 NV23 - Mesh Used Timeout

snap.NV_MESH_ROUTE_USED_TIMEOUT_ID = 23

Every time a known route gets used, its timeout gets reset to this parameter. This prevents active routes
from timing out as often, but allows inactive routes to go away sooner. NV21 - Mesh Minimum Timeout
takes precedence over this timeout.

26 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

Default Value = 5000, which is five seconds

1.3.14 NV24 - Mesh Delete Timeout

snap.NV_MESH_ROUTE_DELETE_TIMEOUT_ID = 24

This timeout (inmilliseconds) controls how long “expired” routes are kept around for bookkeeping purposes.

Default Value = 10000, which is ten seconds

1.3.15 NV25 - Mesh RREQ Retries

snap.NV_MESH_RREQ_TRIES_ID = 25

This parameter controls the total number of retries that will be made when attempting to “discover” a route
(a multi-hop path) over the mesh.

Default Value = 3

1.3.16 NV26 - Mesh RREQ Wait Time

snap.NV_MESH_RREQ_WAIT_TIME_ID = 26

This parameter (inmilliseconds) controls how long a nodewill wait for a response to a Route Request (RREQ)
before trying again.

Default Value = 500, which is a half second

Note that subsequent retries use longer and longer timeouts (the timeout is doubled each time). This allows
nodes from farther and farther away time to respond to the RREQ packet.

1.3.17 NV27 - Mesh Initial Hop Limit

snap.NV_MESH_INITIAL_HOPLIMIT_ID = 27

This parameter controls how far the initial “discovery broadcast” message is propagated across the mesh.

Default Value = 2

If your nodes are geographically distributed such that they are always more than 1 hop away from their
logical peers, then you can increase this parameter. Consequently, if most of your nodes are within direct
radio range of each other, having this parameter at the default setting of 2 will use less radio bandwidth.

SNAPconnect does not support disabling mesh discovery by setting this value to 0. A value of 0 will be
treated as if you had set the initial hop limit to the default value of 2.

This parameter should remain less than or equal to NV28 - Mesh Maximum Hop Limit.

1.3.18 NV28 - Mesh Maximum Hop Limit

snap.NV_MESH_MAX_HOPLIMIT_ID = 28

To cut down on needless broadcast traffic during mesh networking operation (thus saving both power and
bandwidth), you can choose to lower this value to the maximum number of physical hops across your net-
work.

Default Value = 5

1.3. NV Parameters 27

SNAPconnect Reference, Release snapconnect/v3.8.1

Tip: If your network is larger than 5 hops, you will need to raise this parameter.

1.3.19 NV29 - Reserved

Reserved for Synapse use.

1.3.20 NV30 - Mesh Override

snap.NV_MESH_OVERRIDE_ID = 30

This is used to limit a node’s level of participation within the mesh network.

Default Value = 0

When set to the default value of 0, the node will fully participate in the mesh networking. This means that
not only will it make use of mesh routing, but it will also “volunteer” to route packets for other nodes.

Setting this value to 1 will cause the node to stop volunteering to route packets for other nodes. It will still
freely use the entire mesh for its own purposes (subject to other nodes’ willingness to route packets for it).

This feature was added to better support nodes that spend most of their time “sleeping.” If a node is likely
to spend most of its time asleep, there may be no point in it becoming part of routes for other nodes while
it is (briefly) awake.

This can also be useful if some nodes are externally powered, while others are battery-powered. Assuming
sufficient radio coverage (all the externally powered nodes can “hear” all of the other nodes), then the Mesh
Override can be set to 1 in the battery powered nodes, extending their battery life at the expense of reducing
the “redundancy” in the overall mesh network.

Note: Enabling this feature on your bridge node means Portal will no longer be able to communicate with
the rest of your network, regardless of how everything else is configured. No nodes in your network (except
for your bridge node) will be able to receive commands or information from Portal or send commands or
information to Portal.

1.3.21 NV31-49 - Reserved

Reserved for Synapse use.

1.3.22 NV50 - Enable Encryption

snap.NV_AES128_ENABLE_ID = 50

Control whether encryption is enabled, and what type of encryption is in use for firmware that supports
multiple forms. The options for this field are:

ENCRYPTION_TYPE_NONE = Use no encryption. (This is the default setting.)
ENCRYPTION_TYPE_AES128 = Use AES-128 encryption if supported.
ENCRYPTION_TYPE_BASIC = Use Basic encryption.

See also:

28 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

• Encryption enumeration

Default Value = ENCRYPTION_TYPE_NONE

If you set this to a value that indicates encryption should be used, but either an invalid encryption key is
specified (in NV51 - Encryption Key), or your Python environment does not support the encryption mode
specified, your transmissions will not be encrypted.

SNAP versions before 2.4 did not include the option for Basic encryption, and nodes upgraded from those
firmware versions may contain False or True for this parameter. Those values correspond to 0 and 1 of the
encryption enumeration and will continue to function correctly. Basic encryption is not as secure as AES-128
encryption, but it is available in all nodes starting with release 2.4.

If encryption is enabled and a valid encryption key is specified, all communication from the node will be
encrypted, whether it is sent over the air or over a serial connection. Likewise, the node will expect that all
communication to it is encrypted, and will be unable to respond to unencrypted requests from other nodes.
If you have a node that you cannot contact because of a forgotten encryption key, you will have to reset the
factory parameters on the node to reestablish contact with it.

Enabling AES-128 encryption in SNAPconnect requires that you have the third-party PyCrypto Python library
installed. You can acquire the library from http://pycrypto.org/.

1.3.23 NV51 - Encryption Key

snap.NV_CRYPTO_KEY = 51

The encryption key used by either AES-128 encryption or Basic encryption, if enabled. This NV Parameter
is a string with default value of “”. If you are enabling encryption, you must specify an encryption key. Your
encryption key should be complex and difficult to guess, and it should avoid repeated characters when
possible.

Default Value = ‘‘‘‘

An encryption key must be exactly 16 bytes (128 bits) long to be valid. This parameter has no effect unless
NV50 - Enable Encryption is also set to enable encryption.

Even if NV50 - Enable Encryption is set for AES-128 encryption and NV51 - Encryption Key has a valid encryp-
tion key, SNAPconnect will fail with an exception if you do not have the PyCrypto Python library installed.

1.3.24 NV52 - Lockdown

snap.NV_LOCKDOWN_FLAGS_ID = 52

If this parameter is set to 2, the system is put into a “lockdown” mode, where NV Parameters may not be
changed remotely. If it is set to 0 (or never set at all), NV Parameters may be changed (even remotely).

Default Value = 0

Values other than 0 or 2 are reserved for future use and should not be used on a SNAPconnect node.

1.3.25 NV53-54 - Reserved

Reserved for Synapse use.

1.3. NV Parameters 29

http://pycrypto.org/

SNAPconnect Reference, Release snapconnect/v3.8.1

1.3.26 NV55 - Alternate Encryption Key

snap.NV_ALTERNATE_KEY_ID = 55

This NV parameter is only in SNAPconnect. It is likeNV51 - Encryption Key in form and function. It represents
a second (“alternate”) encryption key that can be used in special circumstances.

Default Value = ‘‘‘‘

For example, you could be running a fully encrypted network using key “encryption_key_1” when a new node
is added with encryption key “KEY2(ENCRYPTION)”. By saving the second key in NV55 - Alternate Encryption
Key and proper use of the add_rpc_func(), rpc_use_alternate_key(), and rpc_alternate_key_used()
functions, you can perform multicast interactions with the new node while still continuing to interact fully
(both multicast and unicast) with the old nodes. This gives you a way to reprogram the new node to switch
over to using the first key without having to pause communications to the rest of the network.

1.3.27 NV56-127 - Reserved

Reserved for Synapse use.

1.3.28 NV128-254 - User Defined

These are user-defined NV Parameters and can be used for whatever purpose you choose, just as with em-
bedded SNAP nodes. Unlike embedded SNAP nodes, however, SNAPconnect lets you store any pickleable
object in an NV parameter, rather than just a string, Boolean, integer, or None.

1.3.29 NV255 - Reserved

Reserved for future Synapse use.

1.4 Authentication Realms

The realm parameter is used by SNAPconnect when forming TCP connections. The value is passed to the
authentication functions for accepting and connecting TCP. In versions of SNAPconnect prior to 3.2, this
field would always take on the value “SNAPcom.” With the addition of remote sniffers in SNAPconnect 3.2,
the realm value can now be used to distinguish between regular TCP connections and remote sniffer TCP
connections.

If desired, the realm parameter may be ignored in your client and server authentication functions and the
login information for all connection types will be shared.

See also:

• accept_tcp()

• accept_sniffer()

• connect_tcp()

30 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.4.1 REALM_SNAP

snap.REALM_SNAP

Standard SNAP over TCP Connections This realm will be passed to authentication functions when
connect_tcp() is used to create a connection between SNAPconnect instances. The parameter
sniffer_callback should be set to None when creating a standard TCP connection.

1.4.2 REALM_SNIFFER

snap.REALM_SNIFFER

Remote Sniffer connection over TCP This realm will be passed to authentication functions when
connect_tcp() is used to create a remote sniffer connection between SNAPconnect instances. The
parameter sniffer_callback should be set to a callable function when creating a remote sniffer TCP
connection.

This realm will only be used if accept_sniffer() has been called in addition to accept_tcp() .

1.5 Hooks

SNAP hooks are events that can occur at runtime. This section lists the supported hooks, their meanings,
their triggers, and their (callback) parameters.

See also:

• set_hook()

1.5.1 HOOK_SNAPCOM_OPENED

hooks.HOOK_SNAPCOM_OPENED
SNAP communications have been established over a TCP/IP link.

Parameters

• connection_info (tuple) – The IP address and TCP/IP port of the other SNAPcon-
nect instance being connected to.

• snap_address (string) – The three-byte SNAP address of the other node (Ex.
“\x12\x34\x56”).

Triggered By

This event is triggered by the establishment of an inbound or outbound TCP/IP connection with another
instance of SNAPconnect, meaning that the root cause of the event was either:

• a call to accept_tcp() that allowed/enabled incoming TCP/IP connections; or

• a call to connect_tcp() that created an outgoing TCP/IP connection.

1.5. Hooks 31

SNAPconnect Reference, Release snapconnect/v3.8.1

Example

def on_sc_open(connection_info, snap_address):
pass

Note: If you want to know your own SNAP address, use the local_addr() function.

1.5.2 HOOK_SNAPCOM_CLOSED

hooks.HOOK_SNAPCOM_CLOSED
SNAP communications have ended (or failed to ever get established) over a TCP/IP link.

Scenario 1 – connection could not be established:

Parameters

• connection_info (tuple) – The IP address and TCP port of the otherSNAPconnect
instance for the failed connection attempt.

• snap_address (string) – None.

Scenario 2 – an established connectionwas shut down (parameters shouldmatch those providedwith
the SNAPCOM_OPENED hook):

Parameters

• connection_info (tuple) – The IP address and TCP port of the otherSNAPconnect
instance.

• snap_address (string) – The three-byte SNAP address of the other node (Ex.
“\x12\x34\x56”).

Triggered By

This event is triggered by the shutdown of an established TCP/IP connection or failure to establish a con-
nection in the first place (for example, calling connect_tcp() with the IP address of a computer that is not
running SNAPconnect).

Example

def on_sc_close(connection_info, snap_address):
pass

1.5.3 HOOK_SERIAL_OPEN

hooks.HOOK_SERIAL_OPEN
Communications over a specific serial (USB or RS-232) interface have started.

Parameters

• serial_type – The type of the serial port, one of: SERIAL_TYPE_RS232,
SERIAL_TYPE_SNAPSTICK100, SERIAL_TYPE_SNAPSTICK200.

32 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

• port – The port of specified serial_type that opened, as appropriate for your operat-
ing system. OnWindows, port is a zero-based list (for example, specify 0 for COM1).
On Linux, port will typically be a string (for example, /dev/ttys1).

• addr (string) – The three-byte address of the SNAP device attached to this se-
rial port (Ex. “\x12\x34\x56”), or None if the address could not be retrieved for any
reason.

Triggered By

This event will occur after every successful call to open_serial() . After open_serial() is called, SNAP-
connect will attempt to retrieve the address of the device attached to the serial port. This event will trigger
after the address has been retrieved or the retrieval attempt has timed out.

Because the serial connection is open immediately after the call to open_serial() , it is possible that pack-
ets may be received on the interface before the node address can be determined and the hook function is
called.

Example

def on_serial_open(serial_type, port, addr):
pass

1.5.4 HOOK_SERIAL_CLOSE

hooks.HOOK_SERIAL_CLOSE
Communications over a specific serial (USB or RS-232) interface have ended.

Parameters

• serial_type – The type of the serial port, one of: SERIAL_TYPE_RS232,
SERIAL_TYPE_SNAPSTICK100, SERIAL_TYPE_SNAPSTICK200.

• port – The port of specified serial_type that closed, as appropriate for your operat-
ing system. OnWindows, port is a zero-based list (for example, specify 0 for COM1).
On Linux, port will typically be a string (for example, /dev/ttys1).

Triggered By

A HOOK_SERIAL_CLOSE event can be triggered by a call to close_serial() or (in the case of some removable
USB devices) by the physical removal of the device from the computer SNAPconnect is running on. This
event can only occur after a successful call to open_serial() .

Example

def on_serial_close(serial_type, port):
pass

1.5. Hooks 33

SNAPconnect Reference, Release snapconnect/v3.8.1

1.5.5 HOOK_RPC_SENT

hooks.HOOK_RPC_SENT
A packet created previously by a call to rpc() , mcast_rpc() , or dmcast_rpc() has been sent or all
retries were exhausted while attempting to send the packet.

Parameters

• packet_identifier – The identifier for which packet was sent.

Note: packet_identifier is the same identifier that was originally returned by the
call to rpc() , mcast_rpc() , or dmcast_rpc() . For compatibility with embedded
SNAP nodes, you can also recover this identifier immediately after sending an RPC
using get_info(9).

• transmit_success–True ifSNAPconnect believes the packet has been transmitted
successfully or False if SNAPconnect was unable to send the packet. A successful
transmit does not indicate that the packet was able to reach the destination.

Receipt of a hooks.HOOK_RPC_SENT does not mean the packet made it all the way to the other node. This
is not an end-to-end acknowledgement. If transmit_success is False, the packet has not been transmitted.
But if transmit_success is True, that is no guarantee the destination node actually received the packet.

SNAP has no provisions for end-to-end acknowledgement at the protocol layer. Any such functionality must
be implemented in your application. For example, have a node send a return RPC in response to a request
RPC. Only when the originating node receives the response RPC can it be certain that the original request
made it through.

Triggered By

This event fires after any RPC packet is sent, regardless of whether it was sent by your application code or
automatically by SNAPconnect behind the scenes.

Example

def on_rpc_sent(packet_identifier, transmit_success):
pass

1.5.6 HOOK_STDIN

hooks.HOOK_STDIN
A packet containing user data has been received. This could either be unicast data addressed specif-
ically to this node, or it could be multicast data sent to any nodes within specified multicast group[s].

Parameters data – The actual data (payload) of the DATA MODE packet.

Triggered By

This event is ultimately triggered by some other node invoking data_mode() or mcast_data_mode() , if it is a
SNAPconnect application. Alternatively, an embedded SNAP node (such as an RF220) could be forwarding
data from a serial port by use of the ucastSerial() or mcastSerial() functions.

34 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

Example

def on_stdin_rx(data):
pass

Hint: If you need to know who the data came from, use the rpc_source_addr() function.

1.5.7 HOOK_TRACEROUTE

hooks.HOOK_TRACEROUTE
A traceroute has been successfully completed.

Parameters

• node_addr (string) – The three-byte SNAP address of the node that was “traced”
(Ex. “\x12\x34\x56”).

• round_trip_time – The round trip time for the traceroute packet, after it made it
past the initial hop.

Note: The first hop is not counted in traceroutes, because when the feature was
originally implemented it was decided to only track the over-the-air timing. Bottom
line – the bridge node component of your round_trip_time will be reported as 0
milliseconds. For TCP connections, this could significantly under-report the speed
of that first hop.

• hops – A Python list of tuples, with one list entry for every “hop” that the traceroute
made on its journey to and from the target node.

For example, a traceroute to your directly connected bridge node will have two hops
– one for the hop from SNAPconnect to the bridge node, and a second hop back
from the bridge node to SNAPconnect.

Each Python tuple within the hops list will be made up of two values:

– hop[0] will be the SNAP address that the traceroute packet was received from.

– hop[1] will be the link quality at which the traceroute was received, if it was re-
ceived over a radio link. (Serial links and TCP/IP links have no true “link quality”
in SNAP, and will always be reported as having a LQ of 0.) The link quality is
reported in (negative) dBm, so lower values represent stronger signals. The
theoretical range for the link quality is 0-127.

Triggered By

This event is triggered by invoking the traceroute() function for a node that is actually reachable and can
respond.

Example

def on_traceroute_done(node_addr, round_trip_time, hops):
pass

1.5. Hooks 35

SNAPconnect Reference, Release snapconnect/v3.8.1

1.5.8 HOOK_OTA_UPGRADE_COMPLETE

hooks.HOOK_OTA_UPGRADE_COMPLETE
An over-the-air firmware upgrade has completed.

Parameters

• upgrade_addr (string) – The three-byte SNAP address of the node for which the
upgrade has completed (Ex. “\x12\x34\x56”).

• status_code – The result of the upgrade. See the Firmware upgrades section for
more details.

• message – A human-readable string describing the cause of an error, or None if the
upgrade was successful.

Triggered By

This event follows a call to the upgrade_firmware() function. The event is triggered when an upgrade
completes successfully or an error occurs that halts the upgrade progress.

Example

def on_ota_complete(upgrade_addr, status_code, message):
pass

See also:

• Firmware upgrades enumeration

1.5.9 HOOK_OTA_UPGRADE_STATUS

hooks.HOOK_OTA_UPGRADE_STATUS
An over-the-air firmware upgrade status has advanced.

Parameters

• upgrade_addr (string) – The three-byte SNAP address of the node receiving the
upgrade (Ex. “\x12\x34\x56”).

• percent_complete – An estimate (as a Python float) of how much of an upgrade
has been completed, as a percentage.

Triggered By

This event follows a call to the upgrade_firmware() function. The event is triggered every time progress is
made in an over-the-air upgrade andwill be calledmany times for every upgrade started and not immediately
stopped.

Example

def on_ota_status(upgrade_addr, percent_complete):
pass

36 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.6 Exceptions

When invoking SNAPconnect functions, your program should be prepared to “catch” any Python exceptions
that are “thrown” (raised).

The following lists the possible Python exceptions that can be thrown by the SNAPconnect libraries and
some possible causes (exception text messages).

Note: Obvious exceptions like Exception, KeyboardInterrupt, and SystemExit are not shown.

1.6.1 Thrown by apy

The monotime module in the apy package can throw the following exception:

• OSError

The PostThread module in the apy package can throw the following exception:

• RuntimeError

1.6.2 Thrown by serialwrapper

The ComUtil module in the serialwrapper package can throw the following exceptions:

• NoMorePortsError

– “No more ports to scan”

• Exception

– “Did not receive expected response”

– “Unknown probe version”

The ftd2xxserialutil module in the serialwrapper package can throw the following exceptions:

• Ftd2xxSerialException

– “Cannot set number of devices”

• ValueError

– “Serial port MUST have enabled timeout for this function!”

– “Not a valid port: . . . ”

– “Not a valid baudrate: . . . ”

– “Not a valid byte size: . . . ”

– “Not a valid parity: . . . ”

– “Not a valid stopbit size: . . . ”

– “Not a valid timeout: . . . ”

The ftd2xxserialwin32 module in the serialwrapper package can throw the following exceptions:

• Ftd2xxSerialException

– “Port must be configured before it can be used”

1.6. Exceptions 37

SNAPconnect Reference, Release snapconnect/v3.8.1

– “Could not find devices to open: . . . ”

– “Could not find port: . . . ”

– “Could not open device: . . . ”

– “Could not set latency: . . . ”

– “Can only operate on an open port”

– “Could not set timeouts: . . . ”

– “Could not set baudrate: . . . ”

– “Could not set break: . . . ”

– “Could not reset break: . . . ”

– “Could not get CTS state: . . . ”

– “Could not get DSR state: . . . ”

– “Could not get RI state: . . . ”

– “Could not get DCD state: . . . ”

– “Could not set stopbits, parity, and/or bits per word: . . . ”

– “Could not set flow control: . . . ”

– “Cannot configure port, some setting was wrong. . . ”

– “An error occurred while checking rx queue: . . . ”

– “An error occurred while reading: . . . ”

– “An error occurred while writing: . . . ”

– “An error occurred while flushing the input buffer: . . . ”

– “An error occurred while setting RTS: . . . ”

– “An error occurred while clearing RTS: . . . ”

The PyserialDriver module in the serialwrapper package can throw the following exceptions:

• Exception

– “Buffers don’t match”

• Serial.SerialException

– “WriteFile failed. . . ”

– “write failed: . . . ”

• PortNotOpenError

• TypeError

– “Expected str or bytearray, got . . . ”

– “Unknown serial driver type”

– “Unsupported output type”

• SerialOpenException

– “SNAP USB devices are not currently supported on this platform”

– “An error occurred while setting up the serial port: . . . ”

38 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

The usbxserialutil module in the serialwrapper package can throw the following exceptions:

• ValueError

– “Serial port MUST have enabled timeout for this function!”

– “Not a valid port: . . . ”

– “Not a valid baudrate: . . . ”

– “Not a valid byte size: . . . ”

– “Not a valid parity: . . . ”

– “Not a valid stopbit size: . . . ”

– “Not a valid timeout: . . . ”

• UsbxSerialException

– “Cannot set number of devices”

The usbxserialwin32 module in the serialwrapper package can throw the following exceptions:

• portNotOpenError

• UsbxSerialException

– “Port must be configured before it can be used”

– “Unable to verify device PID: . . . ”

– “USB device was not found to be a SNAP USB device”

– “Could not open device: . . . ”

– “Can only operate on an open port”

– “Could not set timeouts: . . . ”

– “Could not set baud rate: . . . ”

– “Could not set stop bits, parity, and/or bits per word: . . . ”

– “Could not set flow control: . . . ”

– “Cannot configure port, some setting was wrong: . . . ”

– “Could not get CTS state. . . ”

– “An error occurred while checking rx queue: . . . ”

– “An error occurred while reading: . . . ”

– “Write time out occurred and there are no USB devices”

– “A system error occurred while writing: . . . ”

– “An error occurred while flushing the input buffer: . . . ”

– “An error occurred while flushing the output buffer: . . . ”

1.6.3 Thrown by snapconnect

The auth_digest module in the snapconnect package can throw the following exceptions:

• cherrypy.HTTPError

– “Bad Request. . . ”

1.6. Exceptions 39

SNAPconnect Reference, Release snapconnect/v3.8.1

– “You are not authorized to access that resource”

• ValueError

– “Authorization scheme is not Digest”

– “Unsupported value for algorithm. . . ”

– “Not all required parameters are present”

– “Unsupported value for qop: . . . ”

– “If qop is sent then cnonce and nc MUST be present”

– “If qop is not sent, neither cnonce nor nc can be present”

– “Unrecognized value for qop: . . . ”

The dispatchers module in the snapconnect package can throw the following exception:

• TypeError

– “Unknown descriptor type”

The LicenseManager module in the snapconnect package can throw the following exception:

• LicenseError

– “. . . license file has expired”

– “Your license is invalid. . . ”

– “Unable to load license file. . . ”

The listeners module in the snapconnect package can throw the following exception:

• ValueError

– “Unknown serial type”

The snap module in the snapconnect package can throw the following exceptions:

• ImportError

– “Unable to find PyCrypto library required for AES support”

• IOError

– “Unable to load NV params file: . . . ”

• RuntimeError

– “Non-licensed address provided”

– “Invalid license found”

– “Unable to determine callable functions”

– “Tornado ioloop not supported”

– “You must be accepting TCP connections to call accept_sniffer()”

• TypeError

– “Unknown Hook Type”

– “Invalid callback”

– “Invalid connection parameter provided”

• ValueError

40 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

– “Unknown encryption type specified: . . . ”

– “auth_info is not callable”

– “Serial interface type must be an integer”

– “Unsupported serial interface type”

The snaptcp module in the snapconnect package can throw the following exceptions:

• socket.error

– “Did not receive a valid lookup result”

• ValueError

– “SSL support was not found”

1.6.4 Thrown by snaplib

The DataModeCodec module in the snaplib package can throw the following exception:

• DataModeEncodeError

– “Packet is greater than 255 bytes”

– “The packet is too large to encode . . . ”

The MeshCodec module in the snaplib package can throw the following exception:

• MeshError

– “encode function does not yet support message type . . . ”

– “Packet is greater than 255 bytes”

– “Mesh Routing message too large to encode . . . ”

The RpcCodec module in the snaplib package can throw the following exceptions:

• RpcError

– “Do not receive a list of arguments”

– “Source Address must be 3 bytes”

– “Source Address must be between xFFxFFxFF and x00x00x00”

– “No source address was set”

– “No destination address/group was set”

– “dmcast_dstAddrs length must be a multiple of 3 (including 0)”

– “Original TTL for multicast must be greater than 0 and less than 256”

– “Delay Factor for directed multicast must be between 0 and 255”

– “The multicast group must be 2 bytes”

– “Destination multicast group cannot be all zeros”

– “TTL for multicast must be greater than 0 and less than 256”

– “Packet cannot be a Directed Multicast without being a Multicast Packet first”

– “The destination address must be 3 bytes”

– “Int out of range”

1.6. Exceptions 41

SNAPconnect Reference, Release snapconnect/v3.8.1

– “Function name cannot be None”

– “Max string length is 255”

– “Unsupported DataType: . . . ”

– “Packet is greater than 255 bytes”

– “Function/Args too large to encode . . . ”

• TypeError

– “Unsupported type . . . ”

– “String length is greater than 255”

– “Integer is out of range”

• WrongArgCount

The SnappyUploader module in the snaplib package can throw the following exception:

• AlreadyInProgressError

– “There is currently a SNAPpy upload already in progress”

The TraceRouteCodec module in the snaplib package can throw the following exception:

• TraceRouteEncodeError

– “The data is too large to encode”

– “Packet is greater than 255 bytes”

1.7 Sniffer Descriptors

SNAP descriptors are objects that are passed to local and remote sniffer callbacks. These descriptors
represent packets that are received and transmitted by a SNAPconnect instance. This section lists the
supported descriptors, their meanings, and their attributes.

The descriptors passed to sniffer functions are NOT over-the-air packets. These descriptors only represent
packets that are received and transmitted over SNAPconnect serial and TCP connections.

For more about sniffer operations, refer to the accept_sniffer() , connect_tcp() , and start_sniffer()
functions.

Tip: Because not every descriptor type supports every attribute, you will want to use the Python builtin
function isinstance(descriptor, descriptor_type) to verify the descriptor type prior to accessing its
attributes.

1.7.1 Common Attributes

All packet descriptors share several attributes in common:

• raw : A string of decrypted bytes representing the undecoded packet.

• rx : True if the packet was received by the SNAPconnect instance running the sniffer.

• tx : True if the packet was transmitted by the SNAPconnect instance running the sniffer.

42 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

1.7.2 Data Mode Packets

snap.DataModeDescriptor

DataModeDescriptor represents received and transmitted (originated or forwarded) data mode packets.

Attributes

• data : The data being carried by the packet.

• dstAddr : A three-byte string representing the address of the immediate destination of the packet
(subject to mesh routing) or a two-byte multicast group (for a multicast data mode packet).

• final_dst_addr : A three-byte string representing the address of the final destination of the packet
(unicast only).

• isMulticast : True if the packet is multicast or False if it is unicast.

• seq : The sequence number of the packet.

• srcAddr : A three-byte string representing the SNAP address of the original source of the packet.

• ttl : The number of hops remaining for this packet (multicast only).

See also:

• hooks.HOOK_STDIN for how data mode packets are normally received.

• data_mode()

• mcast_data_mode()

1.7.3 Mesh Routing Packets

snap.MeshDescriptor

MeshDescriptor represents received and transmitted mesh routing packets.

Attributes

• additionalAddresses : An optional list of additional discovered/errored addresses.

• hopLimit : The number of hops remaining for this packet.

• msgId : A single character representing the type of mesh packet. Q is used for route requests, P is used
for route replies, and E is used for route errors.

• source : A three-byte string representing the address of the immediate source of the packet.

• originator : A three-byte string representing the address of the node that created the packet.

• originatorDistance : The number of hops traveled from the originator.

• target : A three-byte string representing the address of the target for the routing packet.

• targetDistance : The number of hops until the target is reached.

1.7. Sniffer Descriptors 43

SNAPconnect Reference, Release snapconnect/v3.8.1

1.7.4 Undecoded Packets

snap.RawDescriptor

RawDescriptor may show up in cases where a packet could not be decoded and broken into the correct
components. A raw descriptor contains no additional information outside of the attributes common to all
descriptors.

1.7.5 RPC Packets

snap.RpcDescriptor

RpcDescriptor represents received and transmitted RPC packets.

Attributes

• args : A tuple of arguments to be passed to the RPC function.

• dstAddr : A three-byte string representing the address of the immediate destination of the packet
(subject to mesh routing) or a two-byte multicast group (for a multicast packet).

• final_dst_addr : A three-byte string representing the address of the final destination of the packet
(unicast only).

• funcName : Name of the RPC function to be called.

• isMulticast : True if the packet is multicast or False if it is unicast.

• last_hop_addr : A three-byte string representing the address of the immediate source of the packet.

• seq : The sequence number of the packet.

• srcAddr : A three-byte string representing the address of the original source of the packet.

• ttl : The number of hops remaining for this packet (multicast only).

See also:

• rpc()

• mcast_rpc()

• dmcast_rpc()

1.7.6 Traceroute Packets

TraceRouteDescriptor represents received and transmitted traceroute packets.

Attributes

• dstAddr : A three-byte string representing the address of the immediate destination of the packet.

• elapsed : The elapsed time, in milliseconds, to reach the target node. (This time does not include the
first hop in the path, which will typically be trivial for serial connections but can be significant when
SNAPconnect performs a traceroute over a TCP bridge.)

• final_dst_addr : A three-byte string representing the address of the final destination of the packet.

• isMulticast : True if the packet is multicast or False if it is unicast.

44 Chapter 1. API Reference Guide

SNAPconnect Reference, Release snapconnect/v3.8.1

• msgId : A single character representing the type of traceroute packet. Q is used for traceroute queries
and P is used for traceroute replies.

• orig_src_addr : A three-byte string representing the address of the original source of the packet.

• records : A list of traceroute records with ‘address’ and ‘linkQuality’ attributes.

• srcAddr : A three-byte string representing the address of the immediate source of the packet.

See also:

• traceroute()

• hooks.HOOK_TRACEROUTE for information on how traceroute packets are received.

1.7. Sniffer Descriptors 45

SNAPconnect Reference, Release snapconnect/v3.8.1

46 Chapter 1. API Reference Guide

CHAPTER

TWO

RELEASE NOTES

2.1 Release 3.7.1

Released May 23rd, 2017

• Internal fixes

2.2 Release 3.7.0

Released February 9th, 2017

• Internal fixes

2.3 Release 3.6.1

Released October 21st, 2016

2.3.1 Bugs Fixed

• Mesh sequence numbers are properly randomized on startup.

2.4 Release 3.6.0

Released October 20th, 2016

As of this release, SNAPconnect is licensed under the Synapse SDK License.

2.4.1 Bugs Fixed

• vmStat now properly handles dynamic variable requirements based on status called.

2.4.2 New Features

• Added support for RF220SU-EU and SM220UF1-EU modules.

47

https://www.synapse-wireless.com/sdklicense

SNAPconnect Reference, Release snapconnect/v3.8.1

2.5 Release 3.5.4

Released September 23rd, 2015

Cumulative changesmade to the SNAPconnect package since version 3.2.0 include bug fixes, new features,
and changes and additions that allow SNAPconnect to use newer features of our SNAPcore product.

2.5.1 Bugs Fixed

• Fixed packet size when packet-CRC and extra-CRC were both enabled, script was not being uploaded.

2.5.2 New Features

• Added ability to send and receive Directed Multicast RPCs via dmcastRpc()

• Added new getInfo() options related to dmcastRpc()

• Added ability to perform topology polling via vmStat(12)

• Added ability to update NV parameters with an optional bitmask via:

``save_nv_param(id, integer_value, optional_integer_bitmask)``

2.5.3 Deprecated

• XML-RPC server

• Bluetooth Low Energy

• PyPy

• Python 2.5

• iOS

See also:

• gateways/snapconnect/index - installation, best practices and example projects

48 Chapter 2. Release Notes

PYTHON MODULE INDEX

s
snapconnect.snap, 3

49

SNAPconnect Reference, Release snapconnect/v3.8.1

50 Python Module Index

INDEX

A
accept_sniffer() (Snap method), 4
accept_tcp() (Snap method), 4
add_rpc_func() (Snap method), 5
allow_serial_sharing() (Snap static method), 6

C
cancel_upgrade() (Snap method), 6
close_all_serial() (Snap static method), 7
close_serial() (Snap method), 7
connect_tcp() (Snap method), 7

D
data_mode() (Snap method), 9
DataModeDescriptor (snap attribute), 43
directed_mcast_rpc() (Snap method), 9
disconnect_tcp() (Snap method), 10
dmcast_rpc() (Snap method), 10

G
get_info() (Snap method), 12

H
hooks.HOOK_OTA_UPGRADE_COMPLETE (built-in vari-

able), 36
hooks.HOOK_OTA_UPGRADE_STATUS (built-in variable),

36
hooks.HOOK_RPC_SENT (built-in variable), 34
hooks.HOOK_SERIAL_CLOSE (built-in variable), 33
hooks.HOOK_SERIAL_OPEN (built-in variable), 32
hooks.HOOK_SNAPCOM_CLOSED (built-in variable), 32
hooks.HOOK_SNAPCOM_OPENED (built-in variable), 31
hooks.HOOK_STDIN (built-in variable), 34
hooks.HOOK_TRACEROUTE (built-in variable), 35

L
load_nv_param() (Snap method), 14
local_addr() (Snap method), 14
loop() (Snap method), 14

M
mcast_data_mode() (Snap method), 15

mcast_rpc() (Snap method), 15
MeshDescriptor (snap attribute), 43

N
NV_AES128_ENABLE_ID (snap attribute), 28
NV_ALTERNATE_KEY_ID (snap attribute), 30
NV_CRYPTO_KEY (snap attribute), 29
NV_DEVICE_NAME_ID (snap attribute), 24
NV_FEATURE_BITS_ID (snap attribute), 24
NV_GROUP_FORWARDING_MASK_ID (snap attribute), 23
NV_GROUP_INTEREST_MASK_ID (snap attribute), 23
NV_LOCKDOWN_FLAGS_ID (snap attribute), 29
NV_MESH_INITIAL_HOPLIMIT_ID (snap attribute), 27
NV_MESH_MAX_HOPLIMIT_ID (snap attribute), 27
NV_MESH_OVERRIDE_ID (snap attribute), 28
NV_MESH_ROUTE_AGE_MAX_TIMEOUT_ID (snap at-

tribute), 26
NV_MESH_ROUTE_AGE_MIN_TIMEOUT_ID (snap at-

tribute), 26
NV_MESH_ROUTE_DELETE_TIMEOUT_ID (snap at-

tribute), 27
NV_MESH_ROUTE_NEW_TIMEOUT_ID (snap attribute),

26
NV_MESH_ROUTE_USED_TIMEOUT_ID (snap attribute),

26
NV_MESH_RREQ_TRIES_ID (snap attribute), 27
NV_MESH_RREQ_WAIT_TIME_ID (snap attribute), 27
NV_SNAP_MAX_RETRIES_ID (snap attribute), 25

O
open_serial() (Snap method), 16

P
poll() (Snap method), 16
poll_internals() (Snap method), 17

R
RawDescriptor (snap attribute), 44
REALM_SNAP (snap attribute), 31
REALM_SNIFFER (snap attribute), 31
replace_rpc_func() (Snap method), 17
rpc() (Snap method), 17

51

SNAPconnect Reference, Release snapconnect/v3.8.1

rpc_alternate_key_used() (Snap method), 17
rpc_source_addr() (Snap method), 17
rpc_source_interface() (Snap method), 18
rpc_use_alternate_key() (Snap method), 18
RpcDescriptor (snap attribute), 44

S
save_nv_param() (Snap method), 18
set_hook() (Snap method), 18
Snap (class in snapconnect.snap), 3
snapconnect.snap (module), 3
start_sniffer() (Snap method), 18
stop_accepting_sniffer() (Snap method), 19
stop_accepting_tcp() (Snap method), 19
stop_sniffer() (Snap method), 19

T
traceroute() (Snap method), 19

U
upgrade_firmware() (Snap method), 19

52 Index

	API Reference Guide
	Release Notes
	Python Module Index
	Index

