

DATASHEET SM520 Module

Copyright 2008-2024 Synapse Wireless, All Rights Reserved. All Synapse products are patent pending. Synapse, the Synapse logo, SNAP, and Portal are all registered trademarks of Synapse Wireless, Inc.

Doc# 21-SM520UF1-DST-A-1

351 Electronics Dr. SW, Suite D // Huntsville, AL 35824 // (877) 982-7888// synapsewireless.com

CONTENTS

1	MODULES OVERVIEW	1
2	SPECIFICATIONS	3
3	MODULE PIN DEFINITIONS	5
4	ELECTRICAL CHARACTERISTICS	9
5	MECHANICAL DRAWINGS	11
6	ANTENNA GAIN PERFORMANCE	15
7	BOARD MOUNTING CONSIDERATIONS	19
8	PACKAGING	23
9	AGENCY CERTIFICATIONS	25

CHAPTER

ONE

MODULES OVERVIEW

The SNAP Engine Model SM520 series consists of the SM520UF1 part number. It is an IEEE 802.15.4, low power, highly reliable solution for embedded wireless control and monitoring networks requiring high data rates. It embeds Synapse's SNAP OS, a wireless mesh network operating system, into the Silicon Labs Mighty Gecko EFR32MG12 single-chip 32-bit ARM® Cortex®-M4 core with an integrated transceiver that delivers up to 250Kbits/sec. The Mighty Gecko SoC also includes an integrated power amplifier and LNA for increased range.

SNAP's on-board Python interpreter provides rapid application development and over-the-air programming, while Silicon Labs' low-power RF single-chip design saves board space and lowers power consumption. The modules provide up to 15 channels of operation in the ISM 2.4GHz frequency band.

By default, the SNAP operating system automatically forms a mesh network with other nodes immediately on receiving power. No further configuration is necessary. Multiple unrelated SNAP networks can exist within the same area through several configuration options outlined in the SNAP documentation available from <u>developers.synapsewireless.com</u>.

Note: Channel 15 has reduced transmitter power on both internal compact F antenna and external U.FL connection due to FCC band edge restrictions.

Key Features

- 38 GPIO with up to 38 A/D inputs
- 1MB flash, 64 KB free for over-the-air uploaded user apps
- Two UART ports for control or transparent data
- Low power modes:
 - With pin wakeup enabled (timed or untimed): 1.553 uA
 - Without pin wakeup enabled (timed only): 1.548 uA
- Spread Spectrum (DSSS) technology
- 250 Kbps radio data rate
- 2.4 GHz RF Frequency
- AES 128-bit encryption
- Integrated on-board compact F antenna or U.FL connecter
- Surface Mount, Solder-able
- 4K internal EEPROM
- Up to 16 PWM outputs
- Supports over the air firmware upgrades

SPECIFICATIONS

Performance	Outdoor LOS Range	1 mile (Integrated F Antenna)		
		1.2 mile (Ext Antenna U.FL)		
	Transmit Power Output	up to +19 dBm		
	RF Data Rate	250Kbps		
	Receiver Sensitivity	-TBD dBm (1% PER, 250Kbps)		
Power Requirements	Supply Voltage	2.0 - 3.6 V		
	Transmit Current (Typ@3.3V)	at +19 dBm: 150 mA		
		at +6 dBm: 46mA		
	Idle/Receive On (Typ@3.3V)	22.5 mA		
	Idle/Receive Off (Typ@3.3V)	6.9 mA		
	Sleep Mode Current (Typ@3.3V)	1.553 uA (with pin wakeup enabled)		
		1.548 uA (without pin wakeup enabled)		
General	Frequency	ISM 2.4 GHz		
	Spreading Method	Direct Sequence (DSSS)		
	Modulation	O-QPSK		
	Dimensions	29.8mm x 19mm		
	Operating Temperature	-40 to 85 deg C.		
	Antenna Options	U.FL and on-board compact F antenna		
	Weight	3 grams		
	ESD protection	8kV Direct Contact, 15kV Air		
Networking	Тороlоду	SNAP		
	Error Handling	Retries and acknowledgement		
	Number of Channels	16 Channels		
		15 Full power Channels		
		1 Reduced Power Channel		
Available I/O	UARTS with HW Flow Control	2 Ports		
	GPIO	38 total		
	ADC	Any GPIO can be ADC input		
	PWM	Any GPIO can be PWM output		
Agency Approvals	FCC Part 15.247	FCC ID: U9O-SM520		
	Industry Canada (IC)	IC: 7084A-SM520		

SM520 Specifications at 25° C and 3.3V unless otherwise noted

You must preserve access to UART1 as a serial connection in order to be able to update firmware on the node, or to recover the node by forced script removal or parameter reset.

CHAPTER THREE

MODULE PIN DEFINITIONS

For pin locations, consult the SM520 Mechanical drawing later in this document.

Table 3.1: SM520 Pin Assignments

SM520 Pad Number	SNAPpy IO	Pin Name	Description
A1	-	GND	Module Power Ground
A2	-	VCC	Module Power VCC (2.0 - 3.6V)
A3	-	VCC	Module Power VCC (2.0 - 3.6V)
A4	63	PD15	GPIO
A5	86	PF6_SPI-CLK	GPIO or SPI-CLK
A6	80	PF0_SWCLK (DBG)	GPIO or SWCLK for Debugger
A7	82	PF2_I2C-SDA	GPIO or I2C-SDA
A8	-	GND	Module Power Ground
B1	84	PF4_SPI-MISO	GPIO or SPI-MISO
B2	4	PA4	GPIO
B3	2	PA2_RTS0	GPIO or UART0 RTS
B4	85	PF5_SPI-MOSI	GPIO or SPI-MOSI
B5	-	NC	Not Internally Connected
B6	81	PF1_SWDIO(DBG)	GPIO or SWDIO for Debugger
В7	83	PF3_I2C-SCL	GPIO or I2C-SCL
B8	-	GND	Module Power Ground

Continued on next page...

Table 3.1 – Continued from previous page

SM520 Pad Number	SNAPpy IO	Pin Name	Description
C1	1	PA1_RXD0	GPIO or UARTO RXD
C2	0	PA0_TXD0	GPIO or UART0 TXD
C3	3	PA3_CTS0	GPIO or UARTO CTS
C4	60	PD12	GPIO
C5	57	PD9_RTS1	GPIO or UART1 RTS
C6	-	NC	Not Internally Connected
C7	-	NC	Not Internally Connected
C8	-	NC	Not Internally Connected
D1	41	PC9	GPIO
D2	5	PA5	GPIO
D3	38	PC6	GPIO
D4	37	PC5	GPIO
D5	89	PF9	GPIO
D6	-	NC	Not Internally Connected
D7	-	NC	Not Internally Connected
D8	-	GND	Module Power Ground
E1	35	PC3	GPIO
E2	32	PCO	GPIO
E3	39	PC7	GPIO
E4	36	PC4	GPIO
E5	88	PF8	GPIO
E6	56	PD8	GPIO
E7	-	NC	Not Internally Connected

Continued on next page...

Table 3.1 – Continued from previous page

SM520 Pad Number	SNAPpy IO	Pin Name	Description
E8	-	NC	Not Internally Connected
F1	58	PD10	GPIO
F2	43	PC11	GPIO
F3	23	РВ7	GPIO
F4	62	PD14	GPIO
F5	-	NC	Not Internally Connected
F6	-	NC	Not Internally Connected
F7	-	NC	Not Internally Connected
F8	-	GND	Module Power Ground
G1	-	NC	Not Internally Connected
G2	33	PC1	GPIO
G3	61	PD13_CTS1	GPIO or UART1 CTS
G4	42	PC10_RXD1	GPIO or UART1 RXD
G5	40	PC8	GPIO
G6	25	PB9	GPIO
G7	-	NC	Not Internally Connected
G8	-	GND	Module Power Ground
H1	-	GND	Module Power Ground
H2	59	PD11	GPIO
Н3	34	PC2	GPIO
H4	29	PB13_TXD1	GPIO or UART1 TXD
H5	-	RESET#	Module Reset (Active Low internal pull-up)
H6	-	NC	Not Internally Connected
H7	-	NC	Not Internally Connected
H8	-	GND	Module Power Ground

CHAPTER FOUR

ELECTRICAL CHARACTERISTICS

SM520 DC Characteristics (Operating)

Symbol	Parameter	Condition	Min	Тур	Max	Units
Vcc ¹	Supply Voltage	-40 to 85°C	2.0	3.3	3.6	V

¹Absolute maximum stress rated voltage for V_{CC} is -0.3 to 3.6. It is recommended that bulk capacitance be located as close as possible to the V_{CC} pin on the host board. Ideally, use a single 47µF capacitor at 10V directly at the V_{CC} pin.

ADC Electrical Characteristics (Operating)

			Min	Тур	Max	Units
V refh ¹	ADC Voltage Reference	Programmable	1.25		2.5	V
V INDC	Analog input voltage	Single Ended	0		Vrefh	V

¹V_{REFH} is programmable to two fixed values; 1.25V and 2.5V. The V_{REFH} value will be 1.25V or 2.5V depending on which channel is measured.

ADC Channel Pin Map

Channel	Pins ¹	Reference	
0-7	PAO-PA7	2.5V	
8-17	PB6-PB15	2.5V	
18-29	PCO-PC11	2.5V	
30-37	PD8-PD15	2.5V	
38-53	PF0-PF15	2.5V	
54-57	internal	2.5V	
58-65	PAO-PA7	1.25V	
66-75	PB6-PB15	1.25V	
76-87	PCO-PC11	1.25V	
88-95	PD8-PD15	1.25V	
96-111	PF0-PF15	1.25V	
112-115	internal	1.25V	
116	Temperature		

¹ Not all ADC pins have been brought out to the SM520 footprint.

MECHANICAL DRAWINGS

The drawings below show the modules with the compact F antenna and U.FL Connector options.

Note: The area under and around the module's antenna (marked KEEP OUT AREA and tinted red) should have no components and no copper on any layer of the printed circuit board. Additionally, leave enough clearance around the module for worst case component and processing variances.

For best performance, the module should be mounted on the outside edge of the circuit board with the antenna side as close to the edge of the board as possible.

Note: Metric measurements in millimeters are between brackets, with standard measurements in inches below.

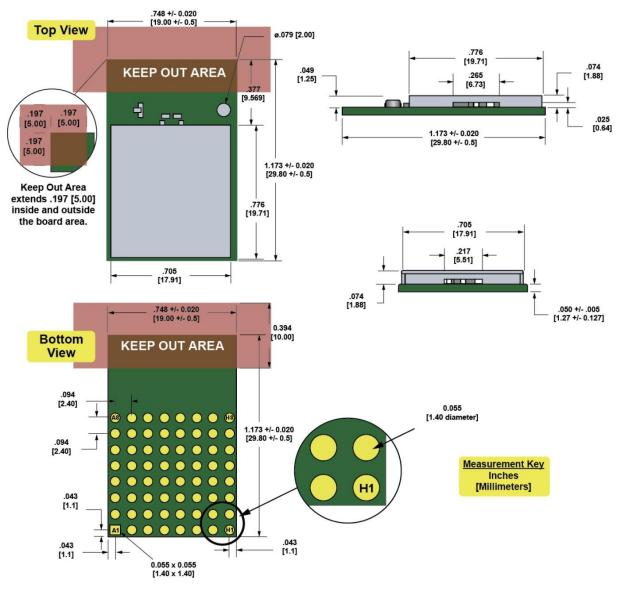
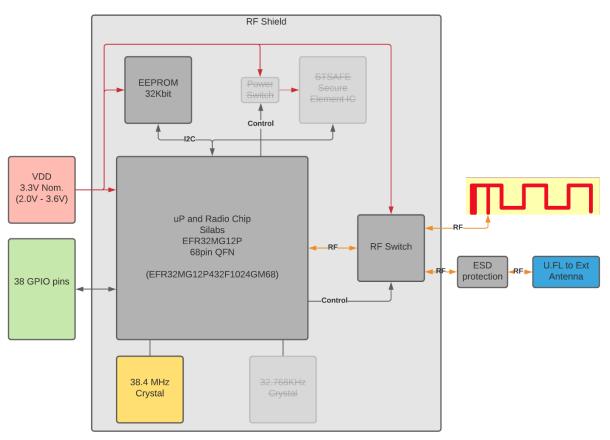



Fig. 5.1: SM520UF1 Mechanical Drawing

SM520UF1 Block Diagram

Fig. 5.2: Block diagram showing the major subsystems comprising Model SM520

ANTENNA GAIN PERFORMANCE

Note: Antenna gain performance information is based on information from the individual companies at the time this document's release. For added assurance, it's best to obtain antenna performance information directly from that antenna's manufacturer.

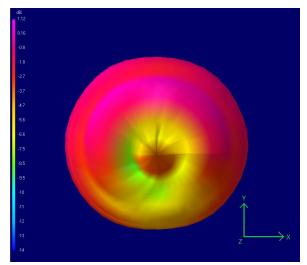


Fig. 6.1: Compact Internal F Antenna Gain Performance at 2440MHz (Horizontal)

Fig. 6.2: Compact Internal F Antenna Gain Performance at 2440MHz (Vertical)

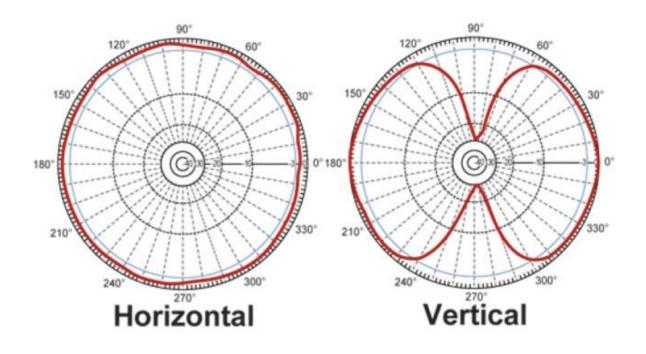
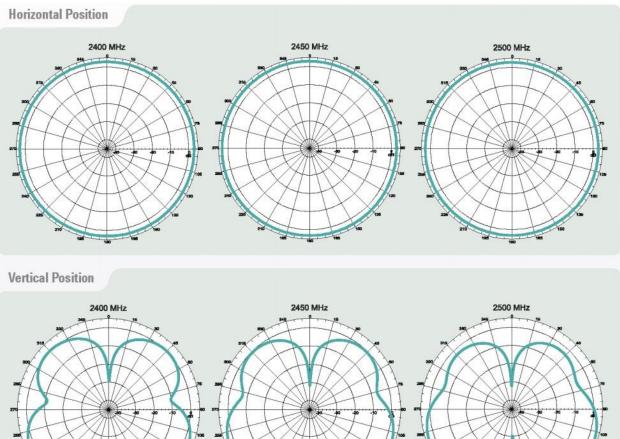



Fig. 6.3: HyperLink Technologies HG2405RD-RSP Antenna Gain Performance

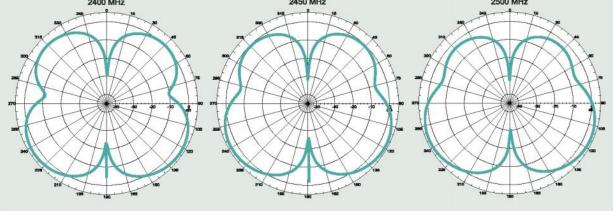


Fig. 6.4: Pulse W1027 Antenna Gain Performance

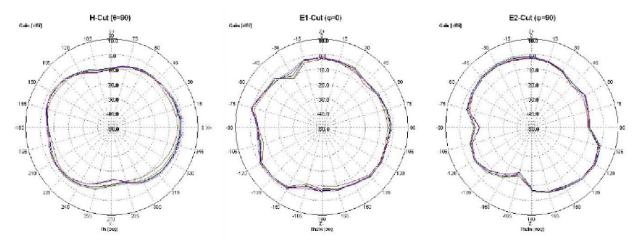


Fig. 6.5: ANT-2.4-CW-RAH-RPS Antenna Gain Performance

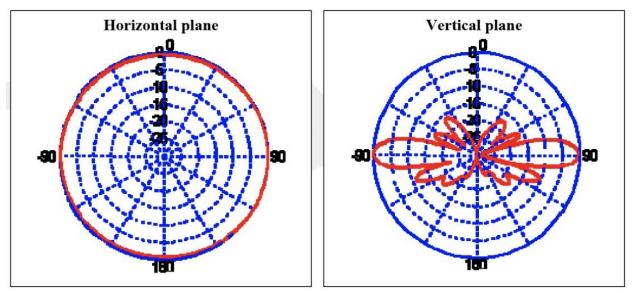


Fig. 6.6: ANT-OSC-8.0-1 Antenna Gain Performance

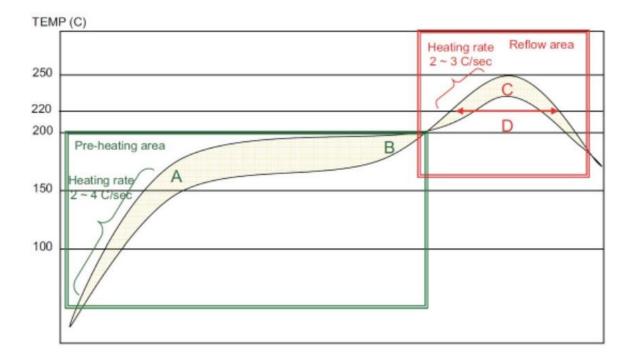
CHAPTER SEVEN

BOARD MOUNTING CONSIDERATIONS

7.1 Processing

Recommended Reflow Profile

Parameter	Value
Ramp up rate (from Tsoakmax to Tpeak)	3°/sec max
Minimum Soak Temperature	150°C
Maximum Soak Temperature	200°C
Soak Time	60-120 sec
TLiquidus	217°C
Time above TL	30-60 sec (recommended: 40 sec)
Tpeak	230° - 250°C (recommended: 235oC)
Time within 5° of Tpeak	20-30 sec
Time from 25° to Tpeak	8 min max
Ramp down rate	6°C/sec max


7.2 Pb-Free Soldering Paste

Use of "No Clean" soldering paste is strongly recommended, as it does not require cleaning after the soldering process.

7.3 Cleaning

In general, cleaning the populated modules is strongly discouraged. Residuals under the module cannot be easily removed with any cleaning process.

- Cleaning with water can lead to capillary effects where water is absorbed into the gap between the host board and the module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pads. Water could also damage any stickers or labels.
- Cleaning with alcohol or a similar organic solvent will likely flood soldering flux residuals into the two housings, which is not accessible for post-washing inspection. The solvent could also damage any stickers or labels.
- Ultrasonic cleaning could damage the module permanently.

Recommendation Valu	e at each point		
A: soak start:	150~180°C	C: Peak temp.:	230~250°C
B: soak end:	170~200°C	D: time above 220°C	30~60sec
A-B: soak time:	90±30sec	(solidus line)	

The recommended approach is to consider using a "no clean" soldering paste and eliminate the post soldering cleaning step.

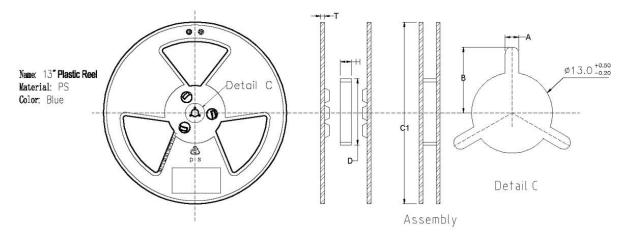
7.4 Repeating Reflow Soldering

Only a single reflow soldering process is encouraged for host boards.

7.5 Rework

The Model SM520 Module can be unsoldered from the host board, but the process is likely to damage the chip and not recommended. If attempting this, use of a hot air rework tool and hot plate for pre-heating from underneath is recommended. Avoid overheating.

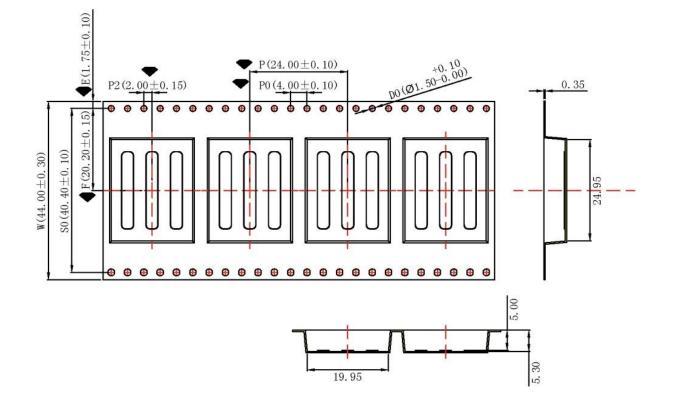
Warning: Never attempt a rework on the module itself (e.g. replacing individual components). Such actions will terminate warranty coverage.


7.6 Additional Grounding

Attempts to improve module or system grounding by soldering braids, wires, or cables onto the module RF shield cover is done at the customer's own risk. The numerous ground pins at the module perimeter should be sufficient for optimum immunity to external RF interference.

CHAPTER EIGHT

PACKAGING


Synapse SM series modules are available on plastic reels of carrier tape. The dimensions for those reels are provided below.

H+/-0.5	C1+/-1.0	A+/-0.2	C+0.5 -0.2	T+/-0.3	B+/-0.2	D+/-2.0
44.5	ø330	2.2	13	2.2	10.75	99.5

All dimensions are in mm.

- 1. Sprocket hole pitch cumulative tolerance: +/-0.2mm.
- 2. Carrier camber not to exceed 1mm in 250mm.
- 3. All dimensions meet EIA-481-C requirements.
- 4. Thickness: 0.35mm +/- 0.05mm.
- 5. Packing length per reel: 12.6 meters.
- 6. Component load per reel: 500 pieces.

AGENCY CERTIFICATIONS

9.1 United States (FCC)

The Model SM520 modules comply with Part 15 of the FCC rules and regulations. Compliance with the labeling requirements, FCC notices, and antenna usage guidelines is required. In order to comply with FCC Certification requirements, the Original Equipment Manufacturer (OEM) must fulfill the following requirements.

- 1. The system integrator must place an exterior label on the outside of the final product housing the SM520 Modules. FCC Label below shows the contents that must be included on this label.
- 2. SM520 Modules may only be used with the antenna that has been tested and approved for use with the module. Please refer to the antenna table provided in this section.

9.2 OEM Labeling Requirements

Attention: The OEM must make sure that FCC labeling requirements are met. This includes a clearly visible exterior label on the outside of the final product housing that displays the contents shown in FCC Label below.

Note: FCC Example Label:

MANUFACTURERS NAME BRANDNAME or TRADENAME

Contains SM520 FCC ID: U9O-SM520

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences and (2) this device must accept any interference received, including interference that may cause undesired operation.

9.3 FCC Notices

Warning: The SM520 modules have been tested by the FCC for use with other products without further certification as per FCC Section 2.1091). Changes or modifications to this device not expressly approved by Synapse Wireless Inc. could void the user's authority to operate the equipment.

Attention: OEM's must certify final end product to comply with unintentional radiators (FCC Sections 15.107 and 15.109) before declaring compliance of their final product to Part 15 of the FCC rules.

Attention: The SM520 modules have been certified for remote and base radio applications. If the modules will be used for portable applications as defined by the FCC, the device must undergo SAR testing.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

9.4 FCC Approved Antennas

The SM520 modules are FCC-approved for fixed base station, mobile, and portable applications.

Attention: To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that the equivalent isotropically radiated power (EIRP) is not more than that permitted for successful communication. This module has been designed to operate with the antennas listed in SM520 Approved FCC Antennas above. The required antenna impedance is 50 ohms.

SM520 Approved FCC Antennas

Part Number	Туре	Gain	Application	Min. Separation
Compact F Antenna	PC Board Trace Antenna	-1.1 dBi	Fixed/Mobile	20 cm.

SM520 Approved FCC Antennas

Part Number	Туре	Gain	Application	Min. Separation
Pulse W1027	Dipole (quarter-wave RPSMA)	3.2 dBi	Fixed/Mobile	20 cm.
HyperLink HG2405RD-RSP	Dipole (quarter-wave RPSMA)	5.5 dBi	Fixed/Mobile	20 cm.
ANT-OSC-8.0-1	Collinear Dipole (RPSMA)	8 dBi	Fixed/Mobile	20 cm.
ANT-2.4-CW-RAH-RPS	Helical Whip (quarter-wave	1.6 dBi	Fixed/Mobile	20 cm.
	RPSMA)	0.0.101		
ANT-2.4-CW-RH-RPS	Helical Whip (quarter-wave RPSMA)	-0.9 dBi	Fixed/Mobile	20 cm.

For more information on approved antennas, please consult the manufacturer's website.

Warning: RF Exposure: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Attention: The preceding statement must be included as a CAUTION statement in OEM product manuals in order to alert users of FCC RF exposure compliance.

Note: Antenna and transmitters may be co-located or operated in conjunction with this device only if the transmitters do not simultaneously transmit. Otherwise, additional regulatory requirements will apply.

9.5 Canada (IC)

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that necessary for successful communication.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. This radio transmitter Model: SM520, IC: 7084A-SM520 has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Le présent émetteur radio Model : SM520, IC : 7084A-SM520 a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

In order to comply with FCC/ISED RF Exposure requirements, this device must be installed to provide at least 20 cm separation from the human body at all times.

Afin de se conformer aux exigences d'exposition RF FCC / ISED, cet appareil doit être installé pour fournir au moins 20 cm de séparation du corps humain en tout temps.

SM520 Approved IC Antennas

Part Number	Туре	Gain	Application	Min. Separation
Compact F Antenna	PC Board Trace Antenna	-1.1 dBi	Fixed/Mobile	20 cm.

SM520 Approved IC Antennas

Part Number	Туре	Gain	Application	Min. Separation
Pulse W1027	Dipole (quarter-wave RPSMA)	3.2 dBi	Fixed/Mobile	20 cm.
HyperLink HG2405RD-RSP	Dipole (quarter-wave RPSMA)	5.5 dBi	Fixed/Mobile	20 cm.
ANT-OSC-8.0-1	Colinear Dipole (RPSMA)	8 dBi	Fixed/Mobile	20 cm.
ANT-2.4-CW-RAH-RPS	Helical Whip (quarter-wave RPSMA)	1.6 dBi	Fixed/Mobile	20 cm.
ANT-2.4-CW-RH-RPS	Helical Whip (quarter-wave RPSMA)	-0.9 dBi	Fixed/Mobile	20 cm.

9.6 IC OEM Labeling Requirements

Labeling requirements for Industry Canada are similar to those of the FCC. A clearly visible label on the outside of the final product housing must display the contents shown in IC Label below.

Note: IC Label Example:

MANUFACTURERS NAME BRANDNAME or TRADENAME MODEL: <model number of OEM device> Contains SM520 IC: 7084A-SM520

Note: The OEM can choose to implement a single label combined for both FCC and IC labeling requirements. If a combined single label is chosen, there must be a clearly visible label on the outside of the final product housing displaying the contents shown in Combined FCC and IC Label below.

Note: Combined FCC and IC Label Example:

MANUFACTURERS NAME BRANDNAME or TRADENAME Contains SM520 FCC ID: U9O-SM520 Contains SM520 IC: 7084A-SM520 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences and (2) this device must accept any interference received, including interference that may cause undesired operation.